Conceptual design of discrete-event systems using templates

Lenko Grigorov

PhD thesis Queen's University

> supervisor: Karen Rudie

Motivation

- Humans need tools to work with DESs
 - Very large state-space
 - Automatic generation of supervisors
- Need for better tools
 - Graphical environment not sufficient
 - Small mistakes may lead to completely incorrect solution
 - Not easy to modify or reuse models
 - Event synchronization is error-prone

Outline of work

- Observational study
 - How do people solve DES problems?
- Recommendations for DES software
- Template design
 - Theoretical framework
 - Tool implementation
- Evaluation of template design methodology
 - Are there positive effects in using the tool?

Observation study

- Five subjects
 - Graduate students with DES background
- Solve two problems
 - Familiar and unfamiliar (reformulated)
 - Using pen and paper and software
 - Think aloud
- Videotaped
- Protocol analysis

Some findings (1)

- Varied approaches
- Only one subject used recommended approach
- Manual construction of the supervisory solution
 - Sub-optimal
 - Passive control
 - No need for formal specifications
 - Simpler manual verification

Some findings (2)

- Mistakes
 - Usually of poor judgement
 - Small errors that render the whole solution incorrect
- Frequent reference to
 - Problem description
 - Previous versions of models
 - ...even if incorrect

Findings (3)

- System diagrams
- Synchronization of modules
 - Demanding
 - Error-prone
- Operations and relations considered at the high level of modelling

Robotic testbed control

- Frequent reconfiguration of model
- Changes in control specifications
- Need for PLC implementation of supervisor

Conceptual design

Active components

- Event generators
- Passive components

- Protocols between active components
- Connections between them

- Synchronization
- Simultaneous structural & functional design

(Santos et al., A computational model for supporting conceptual design of automatic systems, 2001)

Example diagram

Example diagram

Templates (abstract)

Abstract common behavior

Templates (instantiate)

Instantiate existing templates

Templates

Faster

- No need to remodel similar behavior
- Can reconfigure model as needed
- More robust
 - Can be thoroughly tested
 - Synchronization is independent of events
- Easier
 - Graphical conceptual designs
 - Sharing and reuse of existing models

Template design implementation

- Prototype implementation
 - Observed the user experience
 - PLC code generation
- Final implementation
 - Plugin for the IDES software package
 - Reuse of FSA capabilities and existing algorithms
 - Take advantage of results in HCI

Interface

Evaluation

- Twelve subjects
 - Graduate students with DES background
 - From different research groups
- Solve two equivalent problems
 - Modify existing solution
 - Using IDES
 - With and without the template design environment

Metrics

- Rate of task completion
- Time of task completion
 - Time to supervisor computation
 - Total time
- Error rate
- Experiential confidence
- Experiential learnability
- System Usability Scale

Results

- Significant evidence that it is faster to use template designs
- No evidence for variety in
 - Error rate
 - Experiential confidence
 - Experiential learnability
- The SUS for template design is higher
- Subjects preferred the template design environment

Contributions according to subjects

- High-level structure
- (Handling of self-loops in the specifications)
- Templates
- Automation of modelling
- Modelling is less error-prone
- Speed of modelling
- Convenient user interface

Conclusions

- Observations of DES problem solving
 - Described new aspects of problem solving
 - Concretized suspected issues
- Template design environment
 - Reinterprets existing theories
 - Results in faster modelling
 - Supports the reuse of models
 - Provides a more enjoyable experience

Future work

- Longitudinal evaluation of template design
- Parametrization of templates
- Extension with other modelling frameworks
 - Petri nets, temporal logic, inequalities ...
- Better tools
 - Solution verification
 - Implementation of control solutions
 - Runtime computation of supervisory control

