Techniques for the Parametrization of DES Templates

Lenko Grigorov and Karen Rudie

Dept. Electrical and Computer Engineering

Queen's University

2010

Motivation (templates)

Press 1

close 2

open

Press 2

Press 3

What are templates

- DES models which
 - Abstract common behavior

Can be instantiated to create new models

Motivation (parametrization)

- A template is a fixed model
 - So... a separate template for each buffer capacity?

• Why not just parametrize?

Goal

Develop parametrization techniques to produce model instances from templates, given a parameter

Two techniques

- Parametrization using variables
 - For example, use Extended Finite Automata from Sköldstam, M., Åkesson, K., and Fabian, M. (2007). Modeling of discrete event systems using finite automata with variables. In *Proceedings of the 46th IEEE Conference on Decision and Control*, 3387–3392. New Orleans, LA, USA
- Compositional parametrization
 - Similar in spirit to

Bherer, H., Desharnais, J., and St-Denis, R. (2009). Control of parameterized discrete event systems. Discrete Event Dynamic Systems: Theory and Applications, 19(2), 213–265

Parametrization using variables

- Can be used to parametrize the occurrences of events
- The finite automaton is extended with
 - (finite-interval) variables
 - update functions
 - transition guards
- An algorithm exists to convert extended finite automata to "flat" finite automata

Example 1 Buffer

- Parameter k
- Variable n from [0, k]
 - initial value n=0
 - accepting value n=0

in
$$\land n < k / n := n + 1$$
, out $\land n > 0 / n := n - 1$

Example 1 Buffer

Parameter *k*Variable *n* from [0, *k*]
initial value *n*=0
accepting value *n*=0

in
$$\land n < k \ / \ n := n + 1$$
, out $\land n > 0 \ / \ n := n - 1$

Example 2 Event occurs *k* times

- Parameter k
- Variable n from [0, k]
 - initial value n=0
 - accepting value n=k

event
$$/ n := min(n+1,k)$$

How to parametrize events?

- Sometimes it is necessary to parametrize the events of a model rather than the event occurrences.
- Example: k events have to occur in sequence.
 - Cannot be done with variables

Compositional parametrization

- Define a prototype model with indexed events
 - Indices are functions of i
- Choose a parameter k and get individual components
 - For each i from lo(k) to hi(k), create models where events are indexed accordingly
- Compose the components using synchronous product

Illustration

Prototype

$$lo(k) = 1$$
$$hi(k) = k$$

Illustration

Prototype

$$lo(k) = 1$$

 $hi(k) = k$

Components for k = 2

$$i = 1$$
 event1
event2

$$i = 2$$
 event3

event4

Illustration

Prototype

$$lo(k) = 1$$
$$hi(k) = k$$

Components for k = 2

$$i = 1$$
 event1
event2

$$i = 2$$
 event3

event4

Final model for k = 2

Compositional parametrization (definition)

- Let $G^p = (\Sigma_F, Q, \delta, q_0, Q_m)$
 - $\Sigma_F = \{ \sigma_f \mid f \text{ is some function } \mathbf{N} \text{ to } \mathbf{N} \}$
- Let $G^p(i) = (\Sigma(i), Q, \delta(i), q_0, Q_m)$
 - Where σ_f have been replaced by $\sigma_{f(i)}$
- Let $<G^p, lo, hi> = \prod_{i \in [lo, hi]} G^p(i)$
- Compositional parametrization

$$G[k] = A||\langle G_{1}^{p}, Io_{1}(k), hi_{1}(k)\rangle||...||\langle G_{n}^{p}, Io_{n}(k), hi_{n}(k)\rangle|$$

Example 3 k events occur in sequence

Prototypes

$$lo(k) = 1$$

 $hi(k) = k-1$

$$lo(k) = k$$
$$hi(k) = k$$

Components for k = 3

$$i = 1$$
 event1

$$i = 2$$
 event2

event3

Final model for k = 3

Synchronization scope (local)

- Event indices can be expressed as a function of i in some range
 - Create repeated patterns of synchronization

Synchronization scope (local)

- Event indices can be expressed as a function of i in some range
 - Create repeated patterns of synchronization

Synchronization scope (global)

- Sometimes we need to synchronize over all events
 - Mutual exclusion
 - Depends on the specific value of k!
- Selector transitions
 - Event indices are characteristic functions h(i)

Synchronization scope (global)

- Sometimes we need to synchronize over all events
 - Mutual exclusion
 - Depends on the specific value of k!
- Selector transitions
 - Event indices are characteristic functions h(i)

R(f(i))

Synchronization scope (global)

- Sometimes we need to synchronize over all events
 - Mutual exclusion
 - Depends on the specific value of k!
- Selector transitions
 - Event indices are characteristic functions h(i)

R(f(i))

Example 4 Mutual exclusion

Prototype

$$lo(k) = 1$$
$$hi(k) = k$$

Final models

Final remarks

- We proposed two techniques for the parametrization of templates
- Three types of patterns can be expressed
 - Occurrences of events
 - Local synchronization
 - Non-local synchronization
- Future work
 - Implementation
 - "In-use" parametrization
 - Direct controller synthesis for parametrized models similar to Bherer et al. (2009)

