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Abstract This work describes the research conducted in the quest for designing bet-

ter software for discrete-event system (DES) control. The think-aloud data from an

exploratory observational study of solving DES control problems, together with other

relevant research, led to the proposal of a novel approach to DES problem solving

called the template design methodology. This methodology does not require the intro-

duction of new control theory; it is rather an reinterpretation of the existing modelling

framework. It provides a high-level overview of a DES design, and facilitates the use

of template models. Software supporting this methodology was implemented as an

extension to existing DES software. The methodology and the implementation were

subsequently evaluated using twelve subjects. Significant improvements in the speed

of problem solving as well as positive evaluations by the subjects were observed. The

usability data do not show any drawbacks to applying the methodology.

1 Introduction

In the early 1980s, Ramadge and Wonham proposed a framework for the development

of controllers for a class of systems, called discrete-event systems (DESs) [35]. Much

of the related research since then has focused on designing feasible methods for the

computation of such controllers, or supervisors. Indeed, the computations may involve

enormous discrete sets which contain more than 106 elements [31]. The use of algo-

rithmic tools is indispensable in this area; these computations are clearly outside the

capabilities of human agents (if one is to keep the expenses reasonable). However, the

sole implementation of algorithms proves to be insufficient to aid in real-world problem
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solving. In [13], the authors evaluate the pioneering DES software, TCT (now called

CTCT, [7]). It is determined that the usability of its elementary interface is very low,

despite the excellent implementation of the DES algorithms. The next generation of

DES tools include graphical interfaces and the development has been driven by the

need of users to visualize better the models and operations they work with. For ex-

ample, the Desco software [14] and later the Supremica software [1] were developed

trying to address issues surrounding the application of the DES supervision. The IDES

software developed at K. Rudie’s research laboratory, [39], focuses on usability and

also offers a graphical user interface. However, it seems that having a graphical envi-

ronment is insufficient in resolving all problems with the application of DES theory.

The modelling, even when done graphically, is still much too sensitive to errors. Even

a single error in one of the models may render the whole solution of a control prob-

lem incorrect. Adding to this complication, in most cases the solutions to problems

are too large to be comprehended in their entirety, and thus verification becomes very

hard. Lastly, even if a correct (or desired) solution is obtained, due to the specificity

of models and events, it is not simple to reuse the solution in another project. This

makes the application of DES control very difficult for humans, even if all underlying

functionality is implemented.

In order to develop the next generation of DES software which goes beyond a simple

collection of algorithms (with or without a graphical modelling environment), it was

necessary to understand how people deal with DES control problems. Our ultimate goal

was to make use of this knowledge to guide the extension of the IDES software package

so that using it makes DES problem solving simpler, faster, and more reliable. To this

end, we conducted an exploratory observational study of DES problem solving and we

analysed the collected data [21]. Based on the results from the study and inspired by

the work of Santos et al. [41], here we propose a new approach to DES problem solving

within the standard supervisory control framework. There are two main ingredients

in the methodology: high-level conceptual modelling and the availability of templates.

We call this approach the template design methodology. The high-level design con-

sists of entities and connections between them. Entities are simply finite-state models

which, as in the classical framework, can describe either components of the system or

components of the control specifications. We call the system components modules and

the specification components channels, as the control specifications serve to define the

protocols of interaction between system components. Unlike the classical framework,

synchronization between DES entities is not done directly via event name equivalences.

Rather, separate event name maps are created, and the connections between modules

and channels serve as the embodiment of these maps. The use of connections makes the

reconfiguration of high-level designs easy and fast. This not only simplifies the sharing

and reuse of models, but also enables the introduction of templates. Templates are des-

ignated finite-state models which describe the behavior of commonly used components.

For example, if a factory has a number of the same robots, a template can be created

describing the generic behavior of this type of robot. During modelling, templates can

be instantiated, i.e., copies of the template models can be made. For example, in order

to model all the similar robots on the factory floor, it will be sufficient to instantiate

the robot template the corresponding number of times. The availability of templates

simplifies the process of modelling and reduces the likelihood of making errors. Fur-

thermore, the users of the software no longer need to be experts in creating low-level

finite-state models in order to design control solutions.
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We implemented the proposed methodology as an extension of IDES, in the form

of a plugin. In order to evaluate the usability of the new tool, and of the methodology,

we performed an experiment involving twelve participants. Three measures—speed,

experiential ease of use, and System Usability Scale scores [3]—showed improvement

when the template design methodology was used. The evaluation did not uncover any

negative impact to using the proposed methodology in comparison to the classical

approach.

The main contributions of our work include:

– Proposal of a novel method, called template design, for the design of DES control

solutions,

– Implementation of the software to support the use of the method and

– Evaluation of the proposed method in order to validate it.

The rest of this work is organized as follows. Section 2 contains an overview of

relevant research. The template design methodology is described in Section 3, and the

subsequent implementation in Section 4. Then, in Section 5, we discuss the results

of the usability evaluation of the template design software tool. We conclude with

Section 6. The appendix at the end lists the problems and questionnaires administered

during the evaluation from Section 5.

Some parts of this work have already been published in [25,22,23]. Additional

details of the work can be found in [24,21,20].

2 Background Review

The theoretical framework proposed by Ramadge and Wonham [35] allows the mod-

elling of system behavior as a set of sequences of discrete events. Practical implementa-

tions of this theory, however, have run into a number of problems. The most significant

problem is what is called “state-space explosion”. The state complexity of a system

model may grow exponentially with the number of participating subsystems. Another

problem for the use of the theory in practice is the fact that modeling a system and

verifying the end result are difficult and non-transparent for the users. Further com-

plications arise from the fact that the usability of software packages for DES control

is generally unsatisfactory and that generally there is little support for the use of a

computed supervisor in the control of a real system.

While there does not seem to be an easy solution to this complex set of issues,

the use of predefined DES units by engineers may lead to a much easier application

of supervisory control. In [12], the authors describe an approach where the controlled

behavior of a discrete-event system is designed using a set of very simple specifications.

Each specification is built from a prototype structure, a template, and exercises control

over a single aspect of the system—such as the operation of a gripper. All specifications

are executed in parallel and thus, simultaneously, provide control for the whole sys-

tem. The benefits pointed out by the authors include significant reduction of the time

needed to design controllers, (e.g., one hour versus 12 hours), lower cost of the project

(the approach encourages the substitution of software complexity with cheap hardware

sensors) and more robust handling of failures (no need for complex reset procedures).

However, this approach also has some disadvantages. It is assumed that almost all

system behavior can be described as the concurrent execution of simple units without

much interaction. This is not suitable for the definition of global specifications, such
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as the control for nonblocking. The suggested templates seem too simple to express

more complex requirements. Furthermore, the methodology is not cast within the su-

pervisory control framework and it cannot take advantage of the algorithms therein.

The main contribution of the research in [12], in our opinion, is the demonstration of

the use of templates in the design of discrete-event controllers. The same idea plays a

central role in the methodology we propose later in Section 3.

The work of Holloway et al. on condition systems, e.g., [27], also promises to allevi-

ate much of the burden of designing controllers. Condition systems in this framework

are modelled as Petri nets where the firing of transitions happens if specified conditions

are met (similar to input signals) and the marking of states defines what conditions

are satisfied (similar to output signals). A system is described as the composition of

simple and independent condition models. Control specifications are also given as such

a condition model, defining the start marking and the desired end marking of the Petri

net. Then, synthesis algorithms exist to produce automatically the required task blocks

(condition models to drive the evolution of the system), and to transform the specifica-

tion model into a form which will ensure the correct control of the underlying system.

Under this approach it is possible to reuse the independent condition models for the

system behavior; and a library of the frequently used models can be maintained. It is

also possible to combine task blocks hierarchically so as to accomplish more complex

tasks. Furthermore, the synthesis of the controller is fully automated and, at the end

of the process, code may be generated in C++ to control real hardware. A software

tool with a graphical interface is available for the design and verification of condition

models [42]. Among the disadvantages of the condition systems approach is the fact

that there are too many restrictions on the class of systems which can be feasibly

and effectively controlled. Interdependence of task blocks is limited to tree-form hier-

archical structures and thus it is not clear how it would be possible to specify tasks

including non-sequential interactions between system components. The authors remark

that more research is needed in order to develop analysis techniques for unwanted task

interactions (such as contradictory requests). The template design methodology pre-

sented in Section 3 has some similarity to the condition systems framework, in terms

of the independence of system components, the high-level specification of the control

requirements, and the automation of all the steps which do not need human interven-

tion.

Other attempts to resolve some of the problems in the application of supervisory

control, especially the state-space explosion, include modular or hierarchical supervi-

sion and dealing with systems incrementally. A relevant discussion of these topics can

be found in [9], [29] and [2], respectively. Of the methods mentioned, modular super-

vision seems to be most mature. The system is modeled as a set of separate modules

or subsystems which may interact. Usually, control specifications can then be given in

a modular fashion as well—concerning only a subset of all the modules. The reduction

of complexity is a result of being able to compute separate, smaller, supervisors for

each separate specification. Incremental approaches to DES control usually also rely

on having a modular system model. Then, compositions of modules are constructed

only as needed in order to determine a given property of the system. In hierarchical

control, the base system is usually abstracted in a specific fashion and then supervisors

can be computed for only the simpler high-level model of the system. Unfortunately,

the research done on hierarchical supervision is more disparate and a unifying theme

is lacking [19]. Modular control is not without problems either. When separate su-

pervisors are constructed for each specification, it is not possible to predict what the
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net effect will be of the simultaneous application of all supervisors. Sometimes, due

to some interdependence between the different control policies, the system may block.

Thus, after the separate supervisors are constructed, it is necessary to check if the

simultaneous application of these supervisors will lead to blocking. For this purpose,

all supervisors have to be composed, which in some sense forfeits the benefit that

is achieved by constructing separate supervisors. However, since blocking is a global

property, in the general case there is no way to avoid the global check. Despite the fact

that modular supervision does not resolve all problems, it is certainly beneficial when

managing complex systems and solutions. Furthermore, improved methods for checking

the nonblocking property of modular solutions have been proposed, e.g., in [15]. The

template methodology described next takes advantage of modular design techniques.

3 Template Design of DESs

One of our observations during the study discussed in [21] is the following. When

faced with a new problem, subjects frequently engaged in drawing a simple diagram

of interactions between parts of the system which needed to be modeled. Examples

of such diagrams can be seen in Fig. 1. It appeared that the subjects liked to isolate

different aspects of a system before they proceeded with the low-level modeling. Thus,

we wanted to develop an approach to modelling where control engineers can focus on

assembling blocks of subsystems and specifications instead of worrying about every

little detail of the system. Furthermore, the desire was to develop the approach within

the framework of supervisory control, rather than overhaul existing theoretical results

and ask experts to acquire additional background.

Here we provide the theoretical description of a new approach for the design of DES

control which we termed template design. The details of the mathematical description

must not, however, overshadow the key reason why the methodology was developed—

that is, it was conceived in order to make the application of DES control simpler. Our

goals include making the design of systems faster, helping produce more robust designs,

and automating repetitive tasks.

3.1 Framework

Before we proceed with the theoretical aspects of our work, we will describe a simple

system (a part of the system from Section 4.1). It will be used to illustrate the steps

of the new methodology. We will consider three system modules: a rotating table, a

robotic arm and a drill. In this subsystem, there has to be mutual exclusion between

the table and each of the other components so that the table does not rotate while

another module performs an operation. Thus, we will use two specifications: one for

the table and the arm, and one for the table and the drill. The system modules and

the specifications are shown in Fig. 2.

The framework for template design is largely based on the work of Santos et al. [40,

41]. The authors propose a methodology for conceptual design of DESs using entities

and channels. Entities are the active parts of the system (e.g., workstations). Channels

are passive parts of the system which facilitate the transfer of matter and energy

between entities (e.g., conveyor belts). This framework is suitable for the modeling
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Fig. 1: Reproductions of some of the diagrams created by subjects when solving a DES

problem from [21].
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start*

finish*
(a) Modules G∗: rotating table (substitute ‘T ’
for ‘*’), robotic arm (substitute ‘R’) and drill
(substitute ‘D’).

enterA*, enterB*

exitA*, exitB*

(b) Specifications E∗: mutual exclusion be-
tween table and arm (substitute ‘1’ for ‘*’) and
mutual exclusion between table and drill (sub-
stitute ‘2’).

Fig. 2: The modules and specifications used to illustrate the template design method-

ology.

of complex systems since it allows the simultaneous definition of both structure and

functionality.

In our framework we decided to keep all the basic propositions of [41], however,

we decided to cast the whole idea purely in DES terms. A system model consists of a

set of modules (subsystems), a set of channels (specifications), and links between the

modules and channels. Modules and channels as we use them here are similar to the

subplants and local specifications in [9]. Finite-state automata are used for the models.

Let I and J be index sets such that |I|, |J | ∈ N and I ∩ J = ∅. The set of modules is

M = {Gi = (Σi, Qi, δi, q0i, Qmi) | i ∈ I}

and the set of channels is

N = {Gj = (Σj , Qj , δj , q0j , Qmj) | j ∈ J}.

Furthermore, all modules and channels have to be asynchronous, i.e.,

∀i 6= j, Gi, Gj ∈ M : Σi ∩ Σj = ∅

∀i 6= j, Gi, Gj ∈ N : Σi ∩ Σj = ∅

∀Gi ∈ M, Gj ∈ N : Σi ∩ Σj = ∅.

The requirement that modules be asynchronous is not a stringent restriction as dis-

cussed in [9]. The benefit of having asynchronous modules is mainly in being able to

make more uniform assumptions about the system. If some modules are not asyn-

chronous, they can be composed until there are no dependencies between modules.

Furthermore, frequently the asynchronousness of modules is naturally satisfied as su-

pervisory control is usually used to coordinate the joint operation of independent equip-

ment to accomplish a complex task. The channels have to be asynchronous because

they describe generic specifications. It is only with the help of links that the specifi-

cations are synchronized with the given system. In our example, M = {GT , GR, GD}

and N = {E1, E2} (as shown in Fig. 2).
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In order to relate modules and channels, and determine what specifications should

be enforced on the different subsystems, one would link the appropriate events. Let

ΣM =
⋃

Gi∈M Σi be the set of all events in the modules and ΣN =
⋃

Gj∈N Σj be the

set of all events in the channels. Then, the links in the system model will be given by

the function

C : ΣN → ΣM .

In other words, the function defines links between events of channels and events of

modules. The interpretation of the link C(τ) = σ is that the event τ in the given

channel should be considered equivalent to the event σ of the given module—thus

relating the generic specification to the given system. Synchronization between the

modules and channels is established, in effect defining the protocols for the transfer

of information between parts of the system. Note that many channel events can be

linked to the same module event; and thus the operation of a module can be governed

by a number of channels (specifications). On the other hand, each channel event can

be linked only to one module event, and impose restrictions on the occurrences of this

event. Linking multiple module events to the same channel event would establish a

direct synchronization of the module events, which would lead to ambiguity in the

interpretation of the design and would violate the preconditions. Similarly, for all Gj ∈

N , the restrictions of the function,

C|Gj
: Σj → ΣM ,

have to be injective to ensure the consistency of the model. The function

C
−1 : ΣM → 2ΣN

is the inverse of C and, given Gj ∈ N , the restriction of C−1 to Gj is

C
−1|Gj

: ΣM → Σj ,

where C−1|Gj
(σ) equals the only element of C−1(σ)∩Σj if it exists, and is undefined

otherwise.

In our example, we need to link channel E1 to the table, GT , and the robotic arm,

GR. Similarly, we need to link E2 to the table and the drill, GD. The channel events

marked with “A” will be linked to events of the table, while the events marked with

“B” will be linked to the arm (in E1) and the drill (in E2). Thus, we define the function

C as follows:

C(enterA1) = startT ; C(exitA1) = finishT ;

C(enterB1) = startR; C(exitB1) = finishR;

C(enterA2) = startT ; C(exitA2) = finishT ;

C(enterB2) = startD; C(exitB2) = finishD.

As a result, for example, C−1(finishT ) = {exitA1, exitA2} and C−1|E2
(finishT ) =

exitA2.

After a system is modeled in the proposed framework, modular control can be ap-

plied to obtain supervisors for the separate specifications. This is possible since, under

the right interpretation, the model is equivalent to that of a regular modular system. In

our work we propose the use of an optimized version of modular control, namely local

modular control [9]. The precondition for the application of this method is satisfied, i.e.,
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finishT , finishR

startT , startR

Fig. 3: E′

1, the synchronized version of E1.

the participating modules are asynchronous. All modules which are linked to a channel

participate in the subsystem influenced by the specification determined by the channel.

Let G = (Σ, Q, δ, q0, Qm) ∈ N be a channel. Then define G′ = (Σ′, QE , δ′, q0, Qm) as

the synchronized channel G where all channel events have been replaced with their

corresponding module events, i.e.,

Σ′ = {σ | ∃τ ∈ Σ, C(τ) = σ},

δ′(q, σ) = δ(q, C−1|G(σ)).

Furthermore, define

C(G) = {Gi | Gi ∈ M, Σi ∩ Σ
′ 6= ∅},

the set of modules influenced by G.

In our example, in order to synchronize the channel E1, the events are replaced

as specified by the function C (as shown in Fig. 3). Channel E2 is synchronized in a

similar way. Furthermore, C(E1) = {GT , GR} and C(E2) = {GT , GD}.

For every channel Gj ∈ N , all the modules influenced by it are composed via

synchronous product.

G
j
sys = (Σj

sys, Q
j
sys, δ

j
sys, q

j
0sys, Q

j
msys) = ‖C(Gj)Gi.

Then all events in the subsystem which do not appear in the synchronized channel are

applied as self-loops to all states in the synchronized channel, i.e., the channel has no

influence on the occurrence of these events.

G
j
spec = selfloop(G′

j , Σ
j
sys \ Σ

′

j)

Finally, the algorithm from [35] for the construction of the supremal controllable sub-

language of the synchronized channel with respect to the relevant subsystem is invoked.

Sj = supcon(Gj
sys, G

j
spec).

As a result, local supervisors for each channel are constructed.

In our example, G1
sys = GT ‖GR and G2

sys = GT ‖GD. All events in each subsystem

are linked to the corresponding channel, e.g., the events in G1
sys are startT , finishT ,

startR and finishR—and all of them are used in the synchronized channel E′

1 (shown

in Fig. 3). Thus, no self-loops are introduced into the channels, i.e., G1
spec = E′

1 and

G2
spec = E′

2. The supervisor S1 obtained for G1
spec with respect to G1

sys is shown on

Fig. 4. It is easy to see that the simultaneous operation of the table and the arm is

avoided. The supervisor for G2
spec is analogous.

The last step involves checking whether the supervised system is nonblocking, as

defined in [9]. As long as the supervisors are nonconflicting, i.e.,

‖jSj = ‖jSj ,

the nonblocking property is satisfied and, furthermore, the concurrent operation of

the modular supervisors is optimal (i.e., equivalent to a monolithic solution). In our

example, the two supervisors for channels E′

1 and E′

2 are nonconflicting.
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startR

startT

finishT

finishR

Fig. 4: The supervisor for G1
spec with respect to G1

sys.

3.2 Templates

The next advantage of our methodology is that it allows the use of templates. A

template is simply a model of some discrete-event behavior. In the supervisory control

setting, the model would be an FSA. In other words, any FSA can be a template. The

idea behind templates is that if they define some frequently used behavior, one need

not manually create a separate FSA each time this behavior is needed. Instead, the

software can make a copy of the template, or instantiate the template.

Let G = (Σ, Q, δ, q0, Qm) be a template. The instance with index p is defined as

Ins(G, p) = (Σp, Q, δp, q0, Qm), where the events of G are indexed with p. I.e.,

Σp = {σp | σ ∈ Σ},

δp(q, σp) = δ(q, σ).

Thus, for example, creating the DES modules for ten workstations would be reduced

to instantiating the corresponding template with ten different indexes. Since the copies

can be made automatically, the process is both faster and less error-prone. Furthermore,

if the templates have been designed by experts and thoroughly tested, any user can

use them with the same degree of reliability.

Since templates can describe both system behavior (i.e., modules) and restrictions

on behavior (i.e., channels), the use of templates within our framework is very natural.

Suppose there is a library of templates Lib = {Gk | k ∈ K}, where K is an index set

such that |K| ∈ N, K ∩ I = ∅ = K ∩ J . Then, some of the modules, M , participating

in a design can be created by instantiating the required templates. In other words, for

some subset of modules Gi indexed by the subset I ′ ⊆ I, ∀i ∈ I ′, ∃Gk ∈ Lib : Gi =

Ins(Gk, i). Since the events of every template instance are named in a unique way, all

instantiated modules will be asynchronous as required. Similarly, some of the channels,

N , can be created by instantiating templates.

The example we used in Section 3.1 is an ample illustration of this idea. All sys-

tem modules—rotating table, robotic arm and drill—share the same basic behavior, as

shown in Fig. 2(a). The mutual exclusion specifications also share the same behavior,

as shown in Fig. 2(b). Thus, if templates are used, the system modules can be instan-

tiations of a generic “workstation” template, while the channels can be instantiations

of a generic “mutual exclusion” template. If one looks again at the caption of Fig. 2,

something very similar is described verbally.

3.3 Examples of channel templates

In this section, we provide a short list of example channel templates, i.e., generic

specifications. We will not show examples of module templates as usually modules are

application-specific. We will only remark that the template in Fig. 6 can be used to
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create a high-level model of equipment where one is interested only in the sequence

“operation is started”–“operation is finished”.

Figure 5 shows a template which specifies that two events have to alternate. The

template can be altered to specify an arbitrary number of alternating events (alternat-

ing event sets) or to specify a cycle of length larger than two.

event2

event1

Fig. 5: Template which specifies that two events have to alternate.

Figure 6 shows a template which specifies that two events have to alternate and

that the cycle has to complete once it starts. The template can be altered to specify

an arbitrary number of alternating events (alternating event sets) or to specify a cycle

of length larger than two. This template can be interpreted also as the specification of

a single-slot buffer. It can be extended to specify a buffer with an arbitrary number of

slots.

event2

event1

Fig. 6: Template which specifies that two events have to alternate and that the cycle

has to complete once it starts.

Figure 7 shows a template which specifies that an event has to occur at least once.

The template can be altered to specify an arbitrary number of required occurrences or

an arbitrary set of events which need to occur.

event

event

Fig. 7: Template which specifies that an event has to occur at least once.

Figure 8 shows a template which specifies two mutually exclusive sequences of

events. Once one of the sequences starts, the other is prevented from occurring. This is

useful, for example, when specifying that some pieces of equipment must not operate

simultaneously, e.g., when accessing a shared resource. The template can be altered to

specify an arbitrary number of mutually exclusive sequences or to choose if the “start”

and “finish” events can occur multiple times in a single “start-finish” sequence.
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start2

finish1

start1

finish1, finish2

start1

start2

finish2

Fig. 8: Template which specifies two mutually exclusive sequences of events.

Figure 9 shows a template which couples strongly two events. If two different events

are linked to “event1” and “event2” and all other events are linked to the self-loop,

this template will couple strongly the two events in the following sense: if one of them

occurs, the other one has to occur immediately after with no intervening events. The

effect will be similar to the direct synchronization of these events. Note that the number

of events in the self-loop, N, has to correspond to the number of events which must

not interleave with the “event1”–“event2” sequence. The template can be altered by

modifying the self-loop to accommodate links from an arbitrary number of events.

event1 event2

event1

other1, . . . , otherN

event2

Fig. 9: Template which couples strongly two events.

3.4 Parametrization

A further improvement to the template design methodology can be made by considering

parametrization of the template behavior. For example, if one would like to create

templates for buffers, a separate template has to be constructed for all buffer capacities

that need to be considered (e.g., buffer with two slots, buffer with three slots, etc.) In

Fig. 6, the model for a single-slot buffer is shown. However, it can be easily seen that

the basic workings of a buffer are the same regardless of capacity. It would be much

more convenient if there were a single “buffer” template which is parametrized in terms

of capacity—and then at instantiation one would be able to choose the specific capacity

to be used.

One possible approach to the parametrization of FSAs is described in [8]. There,

a regular FSA is augmented with a data collection. The data collection is a vector of

scalars which can range over some set. A vector of unary functions is associated with

each transition in the FSA. For example, a buffer can be modeled as a single state

with two self-looped transitions, “insert” and “remove”, and a single integer in the

data collection to keep track of the number of items in the buffer. Then, the functions

“+1” and “−1” will be applied to the integer when “insert” and “remove”, respectively,

occur. In such a system, control can be based on predicates about the current state
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of the system and on the current value of the data collection. The authors propose a

method to compute the supremal controllable sublanguage of a system by incrementally

backtracking with the predicates until the control decisions do not attempt control of

uncontrollable events.

Unfortunately, the use of this parametrization approach may easily result in non-

regular behaviors and specifications—and thus it cannot be readily applied in the

template design framework. A potential solution would be to restrict the type of data

collections that can be used. For example, each scalar in a data collection could be

restricted to belong to a closed integer interval. In [52], the authors discuss supervisory

control when FSA models are parameterized with Boolean variables and show that

the expressive power of such models is equivalent to regular FSAs. In [43], the authors

take one step further and propose an algorithm for converting parametrized models

into regular FSAs.

4 Implementation of the Template Design Methodology

In this section, the implementation of the proposed template design methodology for

modelling DES problems will be discussed. Instead of designing new software from

scratch, we decided to take advantage of the extensibility of the IDES package already

being developed at K. Rudie’s research laboratory [39].

4.1 Prototype Tool for Template Design

The work on the implementation of the template design methodology started in 2007,

as a part of a research project at the Department of Automation and Systems, Federal

University of Santa Catarina, Brazil. We implemented a prototype of the user interface

for the methodology and conducted a test application for the control of a robotic

testbed. The functionality of the testbed, shown in Fig. 10, is to retrieve parts from an

input buffer, perform operations on the parts and test if the operations were successful.

Depending on the outcome of the test, the given part is output into one of a number of

buffers (such as “accepted”, “reprocess”, etc.) The system is controlled via a Siemens

S7-200 series programmable logic controller (PLC).

The software prototype was implemented as an extension of IDES version 2.1.

The implementation included a graphical interface where the user of the software can

create and manipulate the design elements using the mouse cursor. A screenshot of the

interface is shown in Fig. 11. The models created in the software could be exported

as PLC code (using the method proposed in [10]) for the direct control of the robotic

testbed. More details about the prototype and the project can be found in the full

report, [20].

The application of the template design methodology to a real project, even though

very small, brought some interesting insights from the participating engineering stu-

dents. Surprisingly, the biggest advantage of the design methodology does not seem to

be the ability to use templates per se. According to the feedback from the users of the

software, the biggest benefit of the proposed methodology comes from the fact that the

template design environment makes it very easy to model and remodel systems, i.e., to

create prototypes in the initial stages of system design. It is simple to replace modules

and channels and then generate the corresponding supervisors to see what happens.
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Fig. 10: The robotic testbed where template design was applied.

Fig. 11: The interface of the prototype template design software.

The users no longer have to keep track of event name consistency between modules and

between specifications. Synchronization is not achieved by naming events consistently

but rather by visually linking them. Then, it is easy to try different synchronization

strategies and it is possible to use a single template instance in a number of ways with-

out having to always rename events. This property seemed to be especially liberating

since renaming events is laborious and error-prone. In our project it was necessary to

go through a large number of iterations where the system was simplified with different
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approaches. This rapid prototyping would not have been feasible if all operations had

to be called manually and if event names had to be changed for every new approach.

From the observations made during the application of the template design method-

ology, it becomes clear that future work should focus on the usefulness for rapid proto-

typing. For example, it is desirable to allow the creation of conceptual designs without

having to instantiate specific templates, i.e., by creating “placeholder” modules and

channels. The user would then be able to delay the assignment of templates to these

placeholders until more of the overall design is ready.

4.2 Template Design Plugin

The study of DES problem solving and the template design methodology served as

a spring board for the development of the next major version of IDES, version 3.⋆

Some architectural changes were made to accommodate the development of external

plugins which can extend the package by introducing new model types, algorithms or

IO filters. Subsequently, the template design modelling environment was implemented

as a plugin, called the TD plugin. This choice greatly reduced the development effort

and provided direct access to the built-in FSA capabilities of IDES.

4.2.1 User interface

One of the biggest motivations for the template design methodology was the idea to

offer the ability to create conceptual designs when solving DES problems, and to allow

for rapid prototyping. Naturally, this led to the choice of a graphical interface for the

modelling environment. Some insights about the user interface were also obtained in

the initial proof-of-concept implementation (discussed in Section 4.1).

The TD plugin interface is shown in Fig. 12. It consists of three main parts: the

modelling area, the template library and the consistency validator.

Modelling area The modelling area, see Fig. 13, is where the conceptual design of

a DES solution is built. Users can create modules and channels and establish links

between them. The interaction is mouse-based. The model is presented graphically, as

a diagram. Modules are represented by rectangular icons. Channels are represented by

elliptic icons. This allows for the immediate visual recognition of the two classes of

entities. Links are represented as lines connecting modules and channels. If multiple

events in two entities are linked, only one line is drawn between the entities, labelled

with all corresponding event pairs. The mouse, and pop-up menus are used to create

or remove design elements and to modify the design as needed.

The following approaches were assumed in the design of the visualization and in-

teraction style.

Context-centric The interaction with the design is context-centric. All elements of a

design can be manipulated locally by clicking, dragging, or by invoking a (context-

sensitive) pop-up menu. Furthermore, some operations become available upon the

mouse entering the context of an element—such as the appearance of “connectors”

(small circles) which can be used to directly link entities. In essence, the goal was to

⋆ At the time of writing, version 3 is still not available to the public; version 2.1 is available
at http://www.ece.queensu.ca/directory/faculty/Rudie.html .
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Fig. 12: The user interface of the template design plugin. The image is augmented with

explanatory labels.

make all relevant interactions available immediately from the context of an element.

Inspiration was also drawn from the “pie menu” where menu actions are available

from a circular shape around the point of interest [4]. The following operations are

available by directly manipulating modules or channels:

– Relocate

– Open underlying FSA model

– Relabel

– Link to another entity

– Compute local supervisor (channels only)

All other operations are available from the context-specific pop-up menus of the

elements.

Modeless The use of different modes in user interfaces is sometimes necessary, however,

it may lead to confusion and may reduce the efficiency and desirability of the

interface, [36]. Furthermore, remembering which mode of interaction one uses could

put an additional strain on the limited capacity of the human working memory. The

interface for the modelling environment was designed so that the user interaction

is modeless. In particular, it is not necessary to switch between different “tools”

when modelling. This is possible, in part, by having a context-centric approach

where the palette of available actions is naturally restricted by the affordances of

the manipulated object.
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Fig. 13: The template design modelling area.

Unconstrained Without the establishment of many restrictions, it is easy to create

inconsistent template designs. For example, linking the events of two modules or

two channels breaks the requirement that FSAs in the model be asynchronous.

Similarly, linking a single event from a channel to multiple module events leads

to an inconsistent design. One way to tackle this issue is to prevent the user from

creating inconsistent models, by constraining the available operations when needed.

For example, Norman argues that constraints can be used in product design to

prevent undesired use [33]. Indeed, constraints are already used in the FSA-drawing

interface of IDES, e.g., when the user draws an edge to an empty space, a new node

is created there automatically, preventing the creation of an inconsistent model

(containing an edge without a target node). In the case of the template design

interface, however, we decided not to constrain the user actions and to allow the

design of inconsistent models. This decision was motivated by two factors. First,

the constraints would have to be numerous, dynamic, and complex. Under such

conditions, it is very likely that the users would not be able to form the correct

mental model of the interface. More specifically, it would be hard to obtain a mental

model with a sufficiently strong predictive power—a key property according to

Norman, [32]. Thus, it is likely that users would experience unexpected program

behavior and the usability of the software would be greatly reduced. The second

factor in making the decision is that the anticipated use of the software will be

the rapid prototyping of control solutions. As already discussed, solving complex

problems may involve several iterations, where the requirements are refined, or even
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replaced, as the solution takes shape (e.g., see [51]). For example, it may not be

clear from the very beginning which parts of a model should be the modules and

which ones should be the channels. However, the user may wish to establish links

between them to denote some sort of dependency. The construction of consistent

designs requires one to make many decisions for which information may not be

available in the very beginning. Not constraining the user interaction lets users

explore the solution space more freely, gradually refining an initial “sketch” to a

consistent formal model.

Flexible The interface was designed to be flexible and accommodate a number of inter-

action styles. For example, it is possible to link entities either by clicking, dragging,

or through a menu. Furthermore, most operations which can be accomplished by

direct action (such as labelling an entity), can also be accessed through a pop-up

menu. Flexibility is intertwined also with the lack of constraints in the interface.

Different sequences of actions are acceptable in the creation of a template design.

For example, it is possible to link all entities first and then decide which ones are

modules and channels, or to decide first which entities are modules and channels

and then link them.

Consistent Consistency is an essential property of usable systems [11,33]. The interac-

tion style when linking entities in the modelling area and when linking individual

events in the event linking dialog is the same. Similarly, there is no essential dif-

ference, in terms of user interaction, between modules and channels in a design.

As the template design environment was implemented as a plugin for IDES, it was

also important to make sure that it integrates well with the rest of the interface.

Thus, all common interface elements were shared between the standard IDES en-

vironment (FSA modelling) and the template design environment. For example,

the dialog box for labelling nodes and labelling entities appears and behaves in

exactly the same way in both environments. Furthermore, instead of introducing a

new environment for the FSA models of entities, when the user wishes to work on

a FSA model, it is loaded into IDES in the same way that a regular FSA model

would.

Zoomable Zoomable interfaces are interfaces where the user can select the level of

detail they want to use for different elements [16]. While the interface of the tem-

plate design environment does not subscribe completely to the zoomable interface

paradigm, the template designs are essentially conceptual, or higher-level views

of a DES. Thus, users can “zoom into” each entity to explore it in more detail,

i.e., examine the lower-level FSA model. Similarly, it is possible to “zoom out” of

lower-level FSA models to see the higher-level template design.

The interface offers some other features on which less emphasis was put. For exam-

ple, the user is able to customize the appearance of entities by using colors. Thus, it is

possible to encode different aspects of a model to allow for quick visual segregation.

Template library The template library is the second important part of the user interface

(shown in Fig. 14). While the modelling area allows for the creation of conceptual

designs, it is the template library that allows for the use of templates in the design.

The template library is simply a repository of FSA models which can be instan-

tiated, or copied, into the design. It is possible to add any FSA model to the library,

both from a template design and from the regular FSA models loaded in IDES. Each

template (i.e., FSA model in the library) has an icon to represent it. Currently, icons
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Fig. 14: The template library.

can have different colors and different IDs—short descriptions, a few characters long.

As well, each template has to have a longer description. Once added to the template

library, templates can be modified. Not only is it possible to change the appearance

of the icon and the description, but also changes to the FSA model can be made.

Templates can be removed from the library as well.

The user can make use of the templates in a very simple way. A template can be

dragged from the library to the modelling area to create an instance of it, i.e., to create

an entity whose underlying model is the given FSA. The entities will be represented

with the icon of the instantiated template. It is possible also to drag a template onto

an existing entity in the design, to replace the FSA model of the entity. Lastly, in

line with the context-centric approach of the interface, the pop-up menu of each entity

allows the replacement of the FSA model with a specified template, or the addition of

the existing FSA model to the template library.

In order to differentiate between entities which contain the original version of a

template model, and entities whose template model has been altered, the icons of

entities with modified models are augmented with a small symbol (as shown in Fig. 15).

Consistency validator The consistency validator, as seen in Fig. 16, is the last major

part of the user interface. It visualizes the inconsistencies, if any, in a template design.

One of the design choices for the interface was not to constrain the modelling

process of the user. As a result, it is possible to create inconsistent template designs.
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Fig. 15: Two instances of the same template. The model of the instance on the right

has been modified after the instantiation; this is denoted by the addition of a marker

in the icon.

Fig. 16: The list of consistency issues for template designs. In this case, a few sample

issues are listed.

However, the ultimate goal of most users is to model a DES correctly and to obtain the

supervisory solution. This implies that, at some point, most users would like to arrive

to a consistent design. It was already discussed that the rules for consistent designs

are multiple and not necessarily obvious. The proposed solution involves automatic

consistency evaluation. The main goals in its introduction were to allow the users to

assess the consistency of a template design, but not to impose such an assessment.

First, all potential inconsistencies in a template design were enumerated and de-

scribed. In total, eight types of errors were identified (such as a link between two

channels) and three types of potential issues (such as a module which is not linked

at all). Each issue was described in plain language. For example, if there are channel

events which are not linked, the description will be “One or more channel events are

not linked.”
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Second, a validator was implemented which checks the consistency of the design

continuously (after each modification of the design). The output of this validator is

displayed in an unobtrusive way, so as not to interfere with the design process. The

output is available in three places in three different forms:

1. The status bar of IDES displays a summary of how many inconsistencies are found

in the current design. This information is always available to the user (e.g., for a

quick reference), however, it is very unobtrusive and easy to ignore if so desired.

2. There is an alternative view of the modelling area, entitled “Consistency”. In this

view, all inconsistent elements of the design are highlighted in orange. Otherwise,

the modelling interface is not affected at all and the user can work with either view

(regular or highlighting) in the same way, and can switch between them at will.

With this view, the user can obtain a more immediate sense of the inconsistencies

in the model. However, the workflow need not be altered, as the modelling interface

behaves in the same way as when the regular view is used.

3. The full list of consistency issues in a model is available in a separate tab, entitled

“Consistency issues”. Each item in the list contains the description of the issue

and specifies which elements are affected. In some cases, it also offers shortcuts for

solving the issue. For example, the “Link must connect a module and a channel”

has shortcuts to convert one of the linked modules into a channel (or, conversely,

to convert one of the linked channels into a module). Clicking on a issue highlights

the affected elements in the “Consistency” view of the modelling area. Through the

full list of issues, users can explore in detail all issues and learn about the causes for

the issues. It is anticipated that this list will also help users construct the correct

mental models of what the causes of issues are and, eventually, learn how to create

designs without consistency issues.

By offering different visualizations of the consistency issues, the users are able to select

the level of detail they want to see. Novice users can take advantage of the detailed list of

issues, while expert users may not need to refer to any of the available information. All

visualizations are unobtrusive and do not restrict or interfere with the design process.

4.2.2 Operations

Three operations for template designs were included with the TD plugin. Each opera-

tion is just an encapsulation of a number of standard DES operations, together with

algorithms for the renaming of events according to the event links in a template design.

The three operations are the following:

tdchannelsup This operation is used to compute the local supervisor for a channel.

It renames all events in the models involved in the computation, as necessary,

composes all modules connected to the channel, and computes the supervisor for

the channel with respect to the composed modules.

tdcentralsup This operation is used to compute the centralized supervisor for the whole

template design. It renames all events as necessary, composes all modules into a

monolithic system model, composes all channels into a monolithic specification,

and computes the supervisor for the specification with respect to the system.

tdmodularsup This operation is used to compute the modular supervisory solution for

the whole template design. It invokes the tdchannelsup operation for every channel

in the template design, and then checks if the resulting supervisors are locally

modular, i.e., if the solution is nonblocking and optimal.
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With the exception of the algorithm for the renaming of events according to the event

links, no new algorithms are introduced with the above operations. The template de-

sign operations rely on the DES operations already available in IDES to perform the

necessary computations.

5 Evaluation of the Template Design Methodology

The last part of this work describes the evaluation of the usability of the template design

implementation. It shows that, indeed, the proposed methodology of DES problem

solving is advantageous in comparison to the classical approach.

5.1 Method

The template design methodology was developed in order to provide a more efficient

way to model DES problems and to speed up the process for obtaining control solutions

for such problems. The informal evaluation of the prototype implementation of this

methodology (discussed in Section 4.1 and [20]) showed that the methodology could

be useful in solving DES control problems, especially when rapid development and

prototyping of a supervisory solution is needed.

After the implementation of the template design methodology as a plugin for the

IDES software package, it was necessary to perform a more formal evaluation of the

approach. As there are no other implementations of the methodology, it is unavoidable

that any evaluation will test the combined effect of both the approach and the specific

software implementation. Thus, in the rest of this section, we will refer to the method-

ology and the implementation interchangeably. This is done with the understanding

that, in fact, we refer to the combined effect. Furthermore, we claim that it is not

necessary, at this time, to investigate the two effects separately. The template design

methodology was conceived in order to make the application of supervisory control

simpler; and this necessarily requires the employment of some implementation. Other

implementations of the methodology are possible—both improvements to the software

interface, and theoretical extensions to allow the use of non-FSA based template mod-

els. Until a different implementation is proposed, however, one can only speculate about

the effects that would be observed.

5.1.1 Test conditions

The main focus of the evaluation is the usability of the implementation. As the pro-

posed methodology for DES problem solving is new and there are no established results

for the performance using such a methodology, it is necessary to use comparative eval-

uation, where the performance is contrasted with other methodologies. The software

for template design was implemented as a plugin for IDES version 3 which originally

supports only traditional methods of solving DES problems, using FSA models as pro-

posed in the Ramadge and Wonham framework [50]. Thus, the most natural form of

evaluation was to contrast the performances when IDES version 3 is used with and

without the TD plugin. In this way, any difference in the performance would be at-

tributable mostly to the impact of the plugin as the overall interface of the software

remains the same. The TD plugin relies on the built-in functionality for manipulating
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FSA models and thus the only substantial difference in using it comes from availability

of the new design environment. The condition when IDES is used without the TD

plugin is called the “classical approach”, while the condition when IDES is used with

the TD plugin is called the “template design approach”.

Recruiting subjects is a very challenging task for the evaluation of DES problem

solving; a similar problem was faced in [21]. The expected low recruitment rates con-

fined our study to using a within-subjects design where all conditions are assigned to

every subject (Chapter 4 in [26]). This resulted in further challenges which needed

to be overcome, most notably, the prevention of task learning in within-subjects ex-

perimental designs. Subjects unavoidably learn during the performance of a task and

this could affect their performance in consequent tasks. Particularly in tasks which

involve problem solving, solving a problem once has obviously a huge impact on the

performance when the problem is solved again.

A traditional method to counter the effect of the transfer of learning is to assign

randomly and to counterbalance the order of tasks which each subject performs (Chap-

ters 3 and 4 in [26]). Thus, with two tasks, half of the subjects will perform the first task

first, while the other half will perform the second task first. With counterbalancing,

the results are equally affected by learning transferred from the first task to the second

and from the second task to the first, avoiding ordering bias. However, this approach,

when used with problem solving, will not avoid the issue already described. Namely,

the results from the tasks performed second may be meaningless. It became clear that

it would not make sense to ask each participant to solve the same DES problem under

the two conditions (classical and template design). Instead, two different DES problems

were designed.

The particular DES problems used in the study were influenced by two factors.

First, it was important to reduce the impact of the cognitive load when solving a

problem. Second, the problems had to be solvable in a short amount of time. The

cognitive effort in solving the problems had to be reduced because the goal is to evaluate

the usability of the template design methodology, and a big cognitive effort component

can “overpower” the effects of any specific interface. In other words, it has to be

“obvious” how to solve the problems so that subjects do not spend too much time

deliberating on the essence of the solution, with potentially unpredictable impact on

the collected metrics. Furthermore, the problems had to be short in order to increase

the likelihood of recruiting subjects. After investigation of existing DES toy problems

(e.g., [5,50]) and using the experience from the study of DES problem solving (in

[21]) it became apparent that such problems are cognitively too demanding for our

purposes and/or take too long to model and solve. The natural approach, then, was to

design problems where a part of the solution is already modelled. The subjects only

need to modify a part and add some extensions. Not only are such problems fast to

solve, but also significantly reduce the cognitive effort needed for the problem solving.

An additional, and important, benefit which comes with this type of problem is that

they lend themselves well for the study of the template design methodology. First, the

preliminary study of the proposed methodology (described in Section 4.1) showed that

it is suitable for prototyping (i.e., experimenting with and modifying solutions). Second,

the advantage of using templates can be demonstrated if the solution calls for the

replication of some part of the provided partial model. It must be noted that selecting

partially-solved problems for the experiment in essence favors the template design

methodology. In our opinion, however, this is not an issue as our goal is to evaluate the

proposed methodology for problems where its application makes sense. Furthermore,
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we conjecture that many of the real DES problems do not require modelling from

scratch.

The problems designed for the evaluation are shown in Appendices A.2 and A.3.

The first problem describes an electronics factory (the “factory problem”) and the sec-

ond one describes a manager of network devices (the “spooler problem”). Both prob-

lems use simple and concrete language in order to reduce the cognitive load needed

to understand them. The problems come from different areas of automation (manu-

facturing and network management) and the control solutions are different. Thus, the

amount of leaning which can be transferred between the problems is reduced. How-

ever, both problems require roughly the same number and type of actions in order

to solve them. Thus, the performance when solving the two problems using the same

methodology should be comparable.

After the two problems were designed, four potential conditions emerged:

– Factory problem, classical approach.

– Factory problem, template design approach.

– Spooler problem, classical approach.

– Spooler problem, template design approach.

Each subject only had to complete two tasks, one with the classical approach and one

with the template design approach. The order of the two approaches was randomized

and balanced. Similarly, one of the tasks had to involve solving the factory problem,

while the other one had to involve solving the spooler problem. Again, the order of the

two problems was randomized and balanced. Thus, each subject started with one of

the four tasks listed above, while their second task was the complementary task from

the list. This experimental setup is called mixed design (Chapter 12 in [18]). A part

of the testing condition is assigned within-subjects, i.e., each subject used both the

classical and the template design approaches. The other part of the testing condition

is assigned between-subjects, i.e., each subject solved the factory problem using either

the classical approach or the template design approach (and, consequently, they used

the complementary approach for the spooler problem).

The wording of the problems for both approaches was identical. However, the sub-

jects under the template design condition had a potential advantage in that the partial

model (template design) they received also serves as a conceptual diagram of the exist-

ing solution. To compensate for this advantage, such a conceptual diagram, in printed

form, was included with the problem description for the classical approach conditions

(as seen in Appendices A.2 and A.3).

5.1.2 Metrics

There are many aspects of usability which can be measured. The three main categories

of measures are efficiency, effectiveness, and satisfaction [28]. Furthermore, there are

objective (physically measurable) aspects and subjective (experiential) aspects of us-

ability. The method of evaluation which was chosen for this study was greatly influenced

by the book Measuring the User Experience [45]. The authors not only describe differ-

ent methods of evaluation but also discuss the applicability of the methods based on

the professional experience of the authors. For our evaluation, the following measures

of usability were selected:

– Rate of task completion,
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– Time for task completion,

– Error rate,

– Subjective evaluation of the experience and

– the System Usability Scale.

Rate of task completion This basic measure of effectiveness expresses the proportion of

subjects who managed to complete a given task. There is no limit on how long subjects

can work on a task, thus a task is considered incomplete (or failed) only if the subject

announces that they wish to give up solving the task.

During the experiment, none of the subjects failed to complete a task and thus this

measure is not considered in the rest of this evaluation.

Time for task completion The time for task completion is another basic measure of the

usability of a system, more specifically, of its time efficiency [45]. It is assumed that if

the same task is performed using two methods (or systems, interfaces, etc.), the method

where the task is completed faster is more efficient. In order to allow a more detailed

investigation of the performance of subjects, two time intervals are measured: time to

supervisor computation and time to completion. The time to supervisor computation

is defined as the length of time since starting work until the supervisor computation

algorithm is invoked (locally or globally) for the first time. The time to completion is

the length of time since starting work until announcing completion of the task. If the

supervisor computation algorithm is never invoked, the two times are identical. From

previous observations (e.g., in [21]), the first invocation of the supervisor computation

algorithm is roughly the time when a subject transitions from the “modelling” stage

of problem solving to the “verification” stage. Thus, recording this time together with

the total time for task completion allows for a more granular investigation of the task

performance.

Error rate The error rate, or how many errors subjects make during the execution of

a task, is another commonly used metric in usability testing [45]. It is assumed that a

higher number of errors corresponds to a less effective, more difficult-to-use system. As

practice has shown, [21], it is always necessary to apply a degree of lenience towards

the “correctness” of solutions as there can be multiple interpretations of the same

textual description of a problem. For the purposes of this evaluation, the rubric shown

in Table 1 was developed.

For each article from the rubric, one penalty point is added to the score of a solution

if it does not satisfy the given article. Overall, a solution can receive a maximum of

eight penalty points. As both problems developed for this evaluation, the factory and

spooler problems, have the same structure and call for the same type of problem solving

steps, the rubric can be applied to both of them. Similarly, the rubric can be applied

uniformly to solutions with both the classical and the template design approaches. A

template design approach is only a higher-level wrapper for the same basic solution

elements. The low-level models and the computation algorithms are identical to the

classical approach.

Subjective evaluation of the experience As discussed in [11,45], many aspects, especially

the subjective experience of users, can be investigated through the administration of

questionnaires. We decided to focus on a few aspects which could help compare the
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Model of newly introduced plant component (same as existing models)

correct event set
the model contains the correct number of
events, with the correct controllability property

correct model dynamics
the FSA model generates the correct event se-
quences

Modified model of existing plant component (under valid interpretation)

correct event set
the model contains the correct number of
events, with the correct controllability property

correct model dynamics
the FSA model generates the correct event se-
quences

Newly introduced control specification (under valid interpretation)

correct model dynamics

the FSA model generates the desired event se-
quences; the new specification may be intro-
duced as a separate model, or incorporated into
the existing specification model

correct synchronization

the specification is synchronized correctly with
the plant through the use of events; in the clas-
sical approach, the event names in the plant
and specification models have to be identical
and in the case of the template design approach,
the correct events have to be linked

Supervisory solution

correct inputs

the correct models (plant and specification) are
used as inputs to the supervisor computation
algorithm, even if the models themselves are
not correct

valid approach

the computed supervisory solution will enforce
the desired control, given that the input models
are correct; in the case of modular supervision
(with local supervisors), the combined opera-
tion of all supervisors must be equivalent to the
operation of the optimal centralized supervisor

Table 1: Rubric for the evaluation of the error rate.

template design methodology with the classical approach. The most important aspects

were user confidence and subjective learnability. As discovered in the initial study of

problem solving and as other researchers point out [49], there is significant lack of

transparency in the automatically generated supervisory solutions to DES problems.

This leads to the lack of confidence by the users in the solutions they obtain. Thus, it

is of interest to see how the proposed methodology compares to the classical approach

in terms of confidence. Another important aspect of usability is the learnability of a

system, or how fast a user can learn to operate the system. Learnability requires a

longitudinal study, where the performance of users is studied over time [11,45]. As the

limitations of this evaluation does not allow for such a study, we decided to instead

collect information about the subjective opinion of the subjects on their experience

with learning the system. It is important to keep in mind, however, that the subjective

perception of learnability does not necessarily correlate to the objective measure [28].

To collect information about confidence and subjective learnability, in addition to using

Likert-style scales from one to five [30], we also included open-ended questions where

subjects could write what was easy and difficult for them when completing a task with a
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given methodology. Two questionnaires were administered to every subject—one after

each task completed by the subject—and each questionnaire asks for feedback related

to the given task. The questionnaire administered after the second (and last) task,

also asks the subject directly about their personal preference of DES problem solving

method. Finally, the second questionnaire contains an open-ended question where the

subject is encouraged to describe what they see as the greatest contribution of the

template design methodology. This information allows a comparison of the envisioned

advantages of the methodology and the perceived advantages by the users. The two

questionnaires can be seen in Appendix B.

System Usability Scale The overall subjective usability evaluation of systems is a chal-

lenging task and many questionnaires have been developed to collect such data. In our

evaluation we also wanted to use a standardized questionnaire in order to compare the

overall usability of the TD plugin to that of established numbers. Furthermore, it was

necessary to also choose a short and simple questionnaire to keep the time commit-

ment of subjects low. The System Usability Scale (SUS) [3], satisfied both conditions.

Despite its simplicity, the SUS correlates well with other measures of usability [46].

Furthermore, the SUS has been used for the evaluation of many software systems, thus

standardized scores have been accumulated [45,44].

5.1.3 Subjects and experimental procedure

For this experiment, in total twelve subjects were recruited. All subjects had knowledge

of DES control theory through taking a graduate-level course on the topic. All subjects

were administered a preliminary questionnaire, asking about their experience with

DES software in general and IDES in particular. The data is tabulated in Table 2. As

Engineering Knowledge of Experience using
Subject background DES theory Any DES software IDES IDES+TD plugin

A 3 5 4 4 2
B 5 5 5 2 2
C 5 3 4 5 1
D 4 4 4 4 3
E 5 4 3 3 3
F 2 5 5 5 3
G 5 4 4 2 2
H 1 4 5 5 5
I 5 5 5 5 2
J 5 5 5 1 1
K 5 5 3 3 2
L 5 5 4 2 2

Table 2: Self-reported background information about the subjects. The scale used is

from one (very little) to five (very much).

can be seen, the majority of subjects had some experience with DES software (e.g.,

IDES), however, very few had much experience with template design. Unfortunately,

as explained earlier, it was not feasible to design a longitudinal study where subjects

are asked to become experts on template design before evaluating the tool. In order to
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mitigate, as much as possible, this lack of experience, the experimental procedure was

designed to introduce the subjects to the template design in a short time-frame.

Before the beginning of the study, the subjects are asked to complete two tutorials

available online. Both tutorials use a version of the popular “Transfer line” problem

[50] to teach how to use IDES (first tutorial) and how to use the TD plugin in IDES

(second tutorial). Each tutorial was designed to take not more than one hour and

subjects can complete these tutorials at their leisure.

When the subject arrives for the study, they are first asked to solve a simple, but

somewhat linguistically ambiguous DES problem (reproduced in Appendix A.1), using

both the classical and the template design approaches. This serves the goal to stimulate

the subject’s mind to solve a DES problem which is more challenging than the real

problems in the study. Thus, the first problem in the study will not require a “cold

start” of the DES problem-solving skills of the subject. In a sense, the practice problem

serves a the stimulus which primes the brain to “activate” the learned structures for

DES problem-solving activities. Furthermore, the subject is reminded how to use IDES

and the TD plugin immediately before the test and has the chance to clarify potential

confusions about the software and methodology.

After the practice problem, there is a short break (about ten to fifteen minutes)

and then the subject is asked to complete the first task of the experiment. Their

performance is timed and the models they produce are retained for analysis of the

error rate. The subject is asked to complete the first feedback questionnaire and, if the

first task involved the template design methodology, they are also asked to complete the

SUS questionnaire. After the first task, there is another break which lasts ten to fifteen

minutes. The subject then is asked to complete the second task for the experiment,

where their performance is timed and the models they produce are retained. After

completing the task, the subject fills out the second feedback questionnaire and, if the

second task involved the template design methodology, they are also asked to complete

the SUS questionnaire. With that, the participation of the subject ends.

5.1.4 Hypotheses

The hypotheses tested by this evaluation are the following:

– The total time for task completion is shorter using the template design methodology

in comparison to the classical approach.

– The time for modelling during a task is shorter using the template design method-

ology in comparison to the classical approach.

– Fewer errors are made using the template design methodology in comparison to

the classical approach.

– The template design methodology results in higher confidence in the models users

produce, in comparison to the classical approach.

– The template design methodology results in lower confidence in the supervisory

solution users obtain, in comparison to the classical approach.

– The template design methodology is (experientially) easier to use in comparison to

the classical approach.

– The template design methodology is (experientially) easier to learn in comparison

to the classical approach.

– Users have preference for the template design methodology over the classical ap-

proach.
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– The average SUS score for the TD plugin is not lower than the average SUS score

reported in the survey [45,44].

5.2 Results

Data from all twelve subjects were collected. Before the start of analysis, it was neces-

sary to identify outliers in the data as these can have marked detrimental impact on the

power of statistical tests [26,34]. Following the advice in [47] for sample size of twelve,

the cutoff level of z = 2.246 was used (where z is the distance of the data point from

the mean in terms of standard deviation units). The identification procedure revealed

outliers in the data for two subjects. One of the subjects spent a relatively long time

completing their solution using the classical approach, with z = 2.284 > 2.246. At the

end of their participation, the subject commented that they were very slow because

they were not very comfortable with the DES theory required for the experiment, and

that their performance was not slowed down by the software. The other subject spent a

relatively long time completing their solution using the template design approach, with

z = 2.476 > 2.246. This subject misinterpreted the factory problem. They assumed

(incorrectly) that robots 2 and 3 must not operate concurrently and struggled to find

a satisfactory solution.

There are three options for what to do with outliers in data [26,34]: data trans-

formation, recoding or removal of outliers. We chose to remove the outliers as there

are issues with the application of the other two techniques. Transformation of the data

means that the value of each data point is transformed using a function, such as square

root, logarithm, or inversion, to “pull in” outliers closer to the mean. However, trans-

formations have the negative effect of changing the relative distances between data

points, i.e., may effectively convert ratio variables into ordinal variables where the de-

gree of effect can no longer be quantified. Recoding of outliers consists of changing the

value of each outlier to the value of the closest non-outlier. This is a simple procedure,

however, its applicability in within-subject designs seems dubious as the performances

under different conditions are related and the independent recoding of only one perfor-

mance will alter the nature of the relation. It is then difficult to determine which data

point is “closest” as sets of related data points have to be compared for each subject.

In the discussion that follows, only the data from the ten subjects without outlier

data points are considered.

5.2.1 Time for task completion

As discussed in Section 5.1.2, two separate measurements were collected: time to super-

visor computation and time to completion. The times for different subjects are shown

in Table 3. Subject I was the only subject who was faster using the classical approach.

They explained that they had extensive experience using the IDES software without

the TD plugin, while the template design interface was very new to them.

In order to assess the difference between means and to analyse the interaction of

the conditions, the mixed factorial (one within-subjects, one between-subjects) ANOVA

was employed. Using the Shapiro-Wilk test of normality [37], there is significant prob-

ability that the values for the time to supervisor computation and the total time (both

only under the classical approach condition) are not sampled from a normal distribu-

tion. However, given the general robustness of the ANOVA test under violations of the
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Problem in Classical Template design Difference
Subject TD condition Model Total Model Total Model Total

A Spooler 649 809 189 209 460 600
B Spooler 541 788 261 480 280 308
C Factory 672 726 444 511 228 215
D Factory 615 935 446 545 169 390
E Factory 754 834 506 579 248 255
F Spooler 676 840 488 692 188 148
G Spooler 1031 2035 590 708 441 1327
H Spooler 795 819 660 735 135 84
I Factory 426 582 782 851 -356 -269
J Spooler 1483 1486 1263 1267 220 219

Mean 764.2 985.4 562.9 657.7 201.3 327.7
Std 299.06 438.01 301.09 277.21 223.61 415.61

Table 3: Times taken by subjects (in seconds): time to supervisor computation

(Model) and total time (Total), under the classical approach condition (Classical)

and the template design condition (Template design). The second column shows

which problem was administered under the template design condition (the com-

plementary problem was administered under the classical approach condition). The

last two columns show the differences between the times for the two conditions:

Difference-Model = Classical-Model − TemplateDesign-Model ; Difference-Total =

Classical-Total − TemplateDesign-Total . Positive differences indicate shorter time un-

der the template design condition. The mean and standard deviation for each column

is displayed at the bottom. The data are sorted according to the total time under the

template design condition.

normality assumption [17], we decided that this test is indeed applicable in our case.

Furthermore, it seems that a distribution-free (non-parametric) test is not available

for mixed-design experiments (e.g., no test is suggested in [18], [26] and various other

sources).

The results of the mixed factorial (one within-subjects, one between-subjects)

ANOVA test are summarized in Tables 4 and 5. In the tables, of interest are the

rows labelled ‘Problem’, ‘Method’ and ‘Method’ × ‘Problem’ and the columns labelled

p and η2. The row labelled ‘Problem’ describes the effect on the data due to which

problem was assigned for the template design condition (factory or spooler). The row

labelled ‘Method’ describes the effect due to the problem solving approach (classical or

template design). Finally, the row labelled ‘Method’ × ‘Problem’ describes the effect

due to the interaction between problem and approach. The p value gives the probabil-

ity that the measured difference is due to chance and the η2 value gives the effect size,

i.e., how much of the variability in the data is due to the given effect, or what is the

impact of the effect [6]. A more complete description of the ANOVA table of results

can be found for example in [26].

The results shown in Tables 4 and 5 allow us to make the following conclusions.

– There is significant difference between the times to supervisor computation (p =

0.0148 < 0.05) due to the effect of the problem solving approach. Namely, the time

to supervisor computation can be expected to be shorter when the template design

is used. The size of this effect is medium in comparison to all variability in the data

(0.06 ≤ η2 < 0.14).
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Source SS df MS F p η2

Between-subjects

‘Problem’ 91687.408 1 91687.408 0.562 0.4748 0.050
Subjects within groups 1304124.042 8 163015.505

Within-subjects

‘Method’ 202608.450 1 202608.450 9.563 0.0148 0.111
‘Method’ × ‘Problem’ 55513.008 1 55513.008 2.620 0.1442 0.030
‘Method’ × Subjects 169496.042 8 21187.005

within groups

Total 1823428.950 19

Table 4: Results of the mixed factorial (one within-subjects, one between-subjects)

ANOVA test of the time to supervisor computation. The (between-subjects) ‘Problem’

factor denotes which problem, factory or spooler, was solved under the template design

condition (the corresponding complementary problem was solved under the classical

approach condition). The (within-subjects) ‘Method’ factor denotes the used approach,

classical or template design.

Source SS df MS F p η2

Between-subjects

‘Problem’ 212268.408 1 212268.408 1.189 0.3074 0.072
Subjects within groups 1428730.042 8 178591.255

Within-subjects

‘Method’ 536936.450 1 536936.450 6.418 0.0351 0.182
‘Method’ × ‘Problem’ 107940.008 1 107940.008 1.290 0.2889 0.037
‘Method’ × Subjects 669336.042 8 83667.005

within groups

Total 2955210.950 19

Table 5: Results of the mixed factorial (one within-subjects, one between-subjects)

ANOVA test of the time to completion. The (between-subjects) ‘Problem’ factor de-

notes which problem, factory or spooler, was solved under the template design condition

(the corresponding complementary problem was solved under the classical approach

condition). The (within-subjects) ‘Method’ factor denotes the used approach, classical

or template design.

– There is significant difference between the times to completion (p = 0.0351 < 0.05)

due to the effect of the problem solving approach. Namely, the time to completion

can be expected to be shorter when the template design is used. The size of this

effect is large in comparison to all variability in the data (η2 > 0.14).

– The variability in the data due to the problem assignment, i.e., which problem

was solved using which approach, does not reach significant levels (p > 0.05 for

both the time to supervisor computation and the time to completion). Thus, it is

not possible to reject the hypothesis that the observed difference is due to chance.

In other words, it seems that the measured differences in performance were not

affected by which problem was assigned for the template design condition (and,

consequently, for the classical approach condition).

– The variability in the data due to the interaction between problem assignment and

approach (row ‘Method’ × ‘Problem’), does not reach significant levels (p > 0.05
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for both the time to supervisor computation and the time to completion). Thus,

it is not possible to reject the hypothesis that the observed difference is due to

chance. In other words, it seems that the measured differences in performance did

not depend on which problem was solved.

5.2.2 Error rate

The solutions of each subject were examined and the error rates were computed using

the rubric from Section 5.1.2. The results are summarized in Table 6. To compare the

error rates for the two methods, we used the Wilcoxon signed-rank test, a distribution-

free test recommended for within-subjects ordinal data, [18]. The results of the test are

T (6) = 5.00, p > 0.05 and thus a probability that the observed difference in the data

is due to chance is not significantly low.

Error rate
Subject Classical approach Template design

A 3 1
B 1 0
C 0 0
D 0 0
E 0 1
F 0 0
G 1 0
H 0 0
I 0 1
J 3 1

Sum 8 4

Table 6: The error rates for the solutions of the subjects. Zero points denotes no errors;

each solution can collect a maximum of eight penalty points.

5.2.3 Subjective evaluation of the experience

The data from the questionnaires in Appendix B are summarized in Table 7. The table

does not include the answers to the open-ended questions. All subjects reported that

they completed both solutions to their satisfaction. As well, all subjects reported that

they preferred the template design methodology over the classical approach.

The Wilcoxon signed-rank test reveals that there is significant difference (p < 0.05)

in the answers only to the question “How easy was it to apply the problem solving

methodology which you used?”. Furthermore, the effect of the difference in approaches

on the ease of application is large: r > 0.5 [6].

The open-ended questions cannot be analysed directly using similar statistical tools.

However, we aggregated similar responses into corresponding categories, in order to

present the answers in a compact form. The summary of responses is shown in Table 8.

According to the subjects, the biggest advantages of template design are the way event

synchronization and specification self-loops are treated, the creation of new models,

copying of models, and the fact that the design provides a better overview of the
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Confidence Confidence Easy to learn Easy to apply
in model in supervisor approach approach

Subject C TD C TD C TD C TD

A 3 4 2 4 5 5 2 5
B 4 4 4 4 5 5 4 5
C 5 5 5 5 4 4 3 4
D 5 4 5 4 4 5 4 5
E 3 3 5 5 5 5 4 4
F 4 5 4 5 5 4 4 5
G 3 5 5 5 4 5 5 5
H 4 4 4 4 4 4 3 5
I 4 4 4 4 4 4 3 5
J 4 4 4 4 4 5 2 5

Sum 39 42 42 44 44 46 34 48
Wilcoxon signed-rank test

T(4)=2.00 T(3)=1.50 T(4)=2.50 T(8)=0
p > 0.05 p > 0.05 p > 0.05 p = 0.0039

r = 0.5949

Table 7: The answers of the subjects to the scaled questions from the questionnaires

in Appendix B, after the classical approach condition (C) and the template design

condition (TD). The scale used is from one (very little) to five (very much).

Classical Template design
Category Easy/Difficult Easy/Difficult

Call operations 4/0 0/2
Copy models 0/1 5/1

Create supervisors 2/0 2/0
Event synchronization 0/5 2/0

Find errors 0/1 0/1
Model new models 0/1 5/0

Model models 1/0 0/0
Modify models 1/0 2/0

Situation overview 0/2 3/0
Self-loops 5/0 2/0

User interface 1/1 1/1

Table 8: Aggregated responses to the two open-ended questions from the questionnaires

in Appendix B. Each row shows how many responses indicated that the given category

was “easy” and “difficult”.

situation. The single, big disadvantage of the TD plugin is that subjects found it

difficult to call or interpret the new DES operations.

Finally, the responses of the subjects regarding the contribution of the template

design methodology were aggregated under a number of features derived from the

answers. The summary is shown in Table 9. It can be seen that the most important

contribution (according to number of subjects who mention it) is the introduction of

high-level structure to the overall model. The other features valued by most subjects are

the automatic handling of self-loops in specifications and the ability to use templates.

Generic features such as automation, speed of modelling, reduced risk of making errors

and user interface are not referred to as frequently.
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Feature Count

High-level structure 7
Handling of self-loops in specifications 5

Templates 3
Automation of modelling 2

Modelling is less error-prone 2
Speed of modelling 2

Convenient user interface 2

Table 9: Counts of how many subjects mentioned a given feature as a contribution of

the template design methodology.

5.2.4 System Usability Scale

Each subject was administered the System Usability Scale questionnaire after com-

pleting the task under the template design approach. The results are summarized in

Table 10.

Subject SUS score

A 85
B 95
C 92.5
D 77.5
E 82.5
F 92.5
G 92.5
H 65
I 82.5
J 92.5

Mean 85.75
Std 9.36

Table 10: SUS scores for IDES with the TD plugin.

The SUS results were compared with the data from [44] (mean=66.41, std=12.97)

using the two-tailed t-test with the Welch adjustment for unequal variances [48]. The

difference in means is significant, t(14.46) = 5.315, p = 0.0006 < 0.05, r = 0.813. Thus,

it is possible to conclude that the usability of IDES with the TD plugin, as measured

via SUS, is higher than the average usability in the various software packages from the

survey [44].

5.3 Discussion

The collected experimental data and its analysis allowed us to evaluate more rigorously

the usability of the implementation of the template design methodology. Going back

to the hypotheses from Section 5.1.4, we can now say the following.

– There is significant evidence that the total time for task completion is shorter

using the template design methodology in comparison to the classical approach.

Furthermore, the observed effect is large.
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– There is significant evidence that the time for modelling during a task (i.e., “time

to supervisor”) is shorter using the template design methodology in comparison to

the classical approach. The observed effect is of medium size.

– There is no significant evidence that fewer errors are made using the template

design methodology in comparison to the classical approach.

– There is no significant evidence that the template design methodology results in

higher confidence in the models users produce, in comparison to the classical ap-

proach.

– There is no significant evidence that the template design methodology results in

lower confidence in the supervisory solution users obtain, in comparison to the

classical approach.

– There is significant evidence that the template design methodology is (experien-

tially) easier to use in comparison to the classical approach. The observed effect is

large.

– There is no significant evidence that the template design methodology is (experi-

entially) easier to learn in comparison to the classical approach.

– All subjects in the study showed preference for the template design methodology

over the classical approach.

– The average SUS score for the TD plugin is not lower than the average SUS score

reported in the survey [45,44]. Furthermore, there is significant evidence that the

subjects rated the usability (as measured with SUS) of IDES with the TD plugin

higher than the average usability of the pool of software in the survey.

Anecdotal analysis of the errors which subjects committed reveals that the majority

of mistakes were committed while modifying the existing models (e.g., the model for

robot 1 in the factory problem)—7 out of 12. Similarly, most mistakes involved setting

incorrect controllability—6 out of 12. In the experience of the experiment conductor,

the subjects appeared to forget about setting controllability, rather than explicitly

making the wrong choice. Two of the errors committed involved designing specifications

to alternate robots 2 and 3 in the factory problem, rather than robots 1 and 3. Again,

this points to lack of attention to the problem description, rather than an inherent

lack of understanding of how to solve the problem. It is possible to expect that all

the errors discussed here will have similar impact regardless of the problem solving

approach used. Thus, it should not be a surprise that no significant difference in error

rate was found between the two approaches. A different and more focused experiment

may be needed to reveal any effects of the approaches on the error rate.

In this evaluation, the data from two subjects were not considered because the

times they took to produce their solutions were judged outliers. It is worth discussing

in more detail the activity of one of these subjects. This subject was assigned the fac-

tory problem under the template design condition. As already mentioned, they decided

that it was not sufficient to guarantee the alternation of the operation of robots 1 and 2

and robots 1 and 3. In addition to this, the subject thought that it was necessary to

prevent the concurrent operation of robots 2 and 3 since they would conflict when

placing chips on the same circuit board. This is clearly a misinterpretation of the prob-

lem description where it is explicit that “it is sufficient to add one more coordinator

to guarantee that the outputs of robots 1 and 3 alternate as well”. The subject spent

much time and effort trying to figure out how to accomplish the additional goal by

modifying the two coordinators. This issue was resolved when the subject realized that

the template library available to them contains the “MUTEX” template (a template
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which can be used to specify mutual exclusion). This template was included in the

library because it is used in the spooler problem. The subject quickly instantiated the

template, connected it to the modules for robots 2 and 3 and, upon computing the

supervisory solution, immediately achieved the goal they had in mind. This develop-

ment was not foreseen in the design of the study, and the subject was not originally

aware that such a template would be available to them. A big motivating factor for

the development of the template design methodology was to allow the encapsulation of

useful system or specification behavior, and enable the easy reuse across projects. Even

though the described incident could not be included in the planned analysis of usabil-

ity, we believe that it demonstrates clearly the envisioned advantage of the proposed

methodology.

In summary, it is possible to conclude that, according to this evaluation, the over-

all usability of the template design implementation is good—as demonstrated by the

preference of the subjects, the rating of the experiential ease of use, and the higher-

than average SUS scores. We observed one objective advantage of the template design

methodology, that is, the increase of speed (both for task completion and for mod-

elling). The increase of speed does not seem to come at a cost to the users, i.e., there is

no significant difference in the error rate, confidence in the solution, or the experience

of learning how to use it. This is in contrast to other attempts to design software ac-

cording to observations of problem solving, e.g., in [38] the authors record improvement

of the objective measures of performance, but the experiential ratings the users report

deteriorate.

In most of the aspects of usability measured for this evaluation, no significant

difference was found between the classical and template design approaches. However,

in all measures, on average there is at least a small advantage for the template design

methodology. Altogether, this is a indicator that the template design approach is a

better tool than the classical approach. Further experiments are needed to investigate

the advantages and disadvantages of the methodology. Most importantly, it is necessary

to investigate the (objective) learnability of the implementation, and compare the

performances of experts in both approaches.

Lastly, looking at the contributions of the template design methodology mentioned

by the subjects, in Table 9, one can see that the subjects have recognized features

which correspond to the main goals of the methodology. Subjects mention automation,

robustness, speed, and convenience. Furthermore, as already hinted at in Section 4.1

and [20], it seems that more subjects see value in the high-level structure in the tem-

plate design, rather than the availability of templates. As the problems used for this

study were very simple, the question remains open if under real applications templates

will prove to be as beneficial as having a structured environment, or will remain a

convenience factor. The anecdotal evidence regarding the unexpected use of the “MU-

TEX” template suggests that, indeed, the availability of templates could be of more

aid than demonstrated in this evaluation.

6 Conclusions

This paper described the research conducted in the quest for designing better DES soft-

ware. The exploratory observational study of solving DES control problems, [21], served

as a precursor. The think-aloud data collected from the subjects helped us to develop

a list of recommendations for designing and improving DES software. These observa-
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tions, together with other relevant research, led to the proposal of the template design

methodology for DES problem solving. This methodology does not require the intro-

duction of new control theory; it is rather a reinterpretation of the existing modelling

framework. Software supporting this methodology was implemented and subsequently

evaluated using twelve subjects. Significant improvements in the speed of problem solv-

ing as well as positive evaluations by the subjects were observed. The usability data

do not show any drawbacks to applying the methodology. According to the subjects,

the biggest benefit of template design is the support of conceptual modelling. There

is some indication that the encapsulation of DES behavior, in the form of templates,

could also prove advantageous in certain circumstances. In summary, we managed to

accomplish the goals motivating this work. The insights gained from the observation

of DES problem solving helped us to design better DES software. We believe that

practitioners of DES supervisory control will benefit from using the new methodology.

6.1 Future Work

There are many limitations to the studies and analyses presented in this work. To

gain a better and more detailed understanding of the cognitive processes in DES prob-

lem solving, it is necessary to conduct many more observational studies, focusing on

different aspects of the task. For example, in [21], the verification stage of problem

solving, i.e., when subjects make sure that their solutions are correct, was not explored

in depth. Similarly, our usability evaluation did not examine the learnability of the

template design implementation, nor did the experimental setup allow for discerning if

there is a difference in the error rate when using the new methodology. We believe that

a longitudinal study of template design would bear the most fruit, e.g., the comparison

between the template design and the classical approach in a semester-long undergrad-

uate project. The largest outstanding issue, however, is the fact that our evaluation

did not investigate the effect of the proposed methodology on solving complex (non-

obvious) problems. It is our belief that the modularity in the design, and the visual

representation of the high-level structure would have a positive impact when solving

complex problems. Furthermore, the availability of standardized templates may help

users to produce a successful solution by gaining insight into how to combine existing

elements; recognition is easier than recall. The testing of these hypotheses will involve

a series of elaborate experiments which might not be feasible, given the difficulties

we experienced with subject recruitment in conducting our simpler evaluation study.

Potentially, such studies could be an integral part of the aforementioned longitudinal

study.

As pointed out in Section 3.4, the template design methodology can be improved by

the incorporation of a mechanism to parametrize templates. This is only one specific

way to extend the methodology. More generally, one can consider the fact that the

template design approach makes very few assumptions about the underlying low-level

framework (which, in our case, used finite-state automata). We believe that it should

not pose a problem to employ the approach using a different low-level framework, e.g.,

that of Petri nets. In template design, it is only assumed that there is a way to define

discrete-event behavior formally (i.e., the models that underlie the module and channel

entities in the design), and an algorithm to compute supervisory control according to

the channel specifications. It is conceivable that even mixed-framework designs could

be used where modules and channels may be modelled using a variety of techniques.
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In order to enable the use of such approaches, it is necessary to develop supervisory

control algorithms which will act upon heterogeneous models.
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A Problem Definitions

A.1 Practise Problem

This is a practise problem to remind you how to solve DES problems with IDES and

to help you improve your skills before the experimental session.

The problem is described as follows. There is a lady who lives with two dogs, Toby

and Ralf. Each dog has its own room where he spends the night, and he can go in or

out of his room. The dogs cannot open the doors to their rooms, so the woman can

stop them from going in or out. The food is served in the common area of the house,

so the dogs can only eat when they are outside their rooms. Ralf is a very good dog

and listens to the lady. She can tell him how much to eat. Toby is also a good dog, but

when it comes to food, he is uncontrollable. He can eat and eat as long as there is food.

Since Toby is so greedy, and could potentially eat Ralf’s share, the lady decided that

each day she must make sure that it is Ralf who eats first (he gets only one share),

and it is Toby who eats second (he can eat as much as he wants as she cannot control

him). Before any one of the dogs goes back into his room for the night, both dogs must

have eaten (Ralf once and Toby at least once). Both dogs need to go to their rooms

for the night.

Your tasks are:

– Create the models for the two dogs.

– Create the model for the control specification (Ralf eats first, Toby second; both

go to sleep but not before both having eaten).
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– Compute the supervisory solution for the problem.

First, solve the problem with the classical approach, without using a Template Design.

Then, solve the same problem using the Template Design methodology.

You are encouraged to consult the conductor of the experiment if you need clarifi-

cation and/or assistance.

A.2 Problem 1: Factory Problem

Provide a discrete-event control solution to the problem of “Electronics

factory”

The initial situation is described as follows. There is a factory for electronic com-

ponents with two robots. Each robot can start processing a component and finish

processing it. There is control only over when the robots start processing components.

Robot 1 produces circuit boards, while robot 2 produces chips that are fitted onto the

boards further down the line. A circuit board is required when robot 2 outputs a chip.

Thus, a coordinator is in place which makes sure that the robots alternate in producing

boards and chips.

The new situation is described as follows. The factory has been modified to fit two

different chips on the same board. Robot 1 has received an upgrade. During processing,

it can detect defects in the circuit boards. Any time it detects a misaligned hole, it can

perform an additional corrective procedure (redrilling). As well, a third robot has been

installed to produce the second kind of chip. Robot 3 is of the same type as robot 2 (it

can start and finish processing). Further down the line, each circuit board is fitted with

one chip from robot 2 and one chip from robot 3. To guarantee correct operation of

the factory, it is sufficient to add one more coordinator to guarantee that the outputs

of robots 1 and 3 alternate as well.

Your tasks are the following.

– Model robot 3 and update the model of robot 1.

– Create the specification for the coordination of robots 1 and 3.

– Compute the supervisory solution for the system.

– Verify the correctness of the supervisory solution.

When you have completed all of the above tasks, please announce that you are

ready. In case you decide to stop before completing all tasks, please also make an

announcement.

Note: The models for robots 1 and 2 and for the coordination between the two robots

are provided to the subjects who solve this problem. Under the template design condi-

tion, the template design for the problem is provided as well; otherwise the following,

similar printed conceptual diagram is provided.
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A.3 Problem 2: Spooler Problem

Provide a discrete-event control solution to the problem of “Device

coordinator”

The initial situation is described as follows. There is a computer network with two

clients (workstations), a printer and a fax machine. Each client can request access to

the printer and release the printer when done printing. There is control only over when

the clients are allowed to access the printer but not over when they release the device.

In order to avoid mingled printing jobs, there is a coordinator (spooler) in place which

makes sure that the two clients do not acquire access to the printer at the same time.

The new situation is described as follows. A third client has been added to the

network, and the third client can request access to the fax machine and release the fax

machine when done transmitting data—similar to the operation of the other two clients

on the printer. As well, client 2 has been given permission to use the fax machine in

addition to the printer. Client 2 can now request either access to the printer (and release

it when done printing) or to the fax machine (and release it when done transmitting

data). Again, there is control only over the requests but not over when the devices are

released. Since it is necessary to guarantee the consistency of transmitted data through

the fax machine, a new coordinator is required. Similar to the printer spooler, it has

to prevent simultaneous access to the fax machine by clients 2 and 3.

Your tasks are the following.

– Model client 3 and update the model of client 2.

– Create the specification for the coordination of clients 2 and 3.

– Compute the supervisory solution for the system.

– Verify the correctness of the supervisory solution.

When you have completed all of the above tasks, please announce that you are

ready. In case you decide to stop before completing all tasks, please also make an

announcement.

Note: The models for clients 1 and 2 and for the printer spooler are provided to the

subjects who solve this problem. Under the template design condition, the template

design for the problem is provided as well; otherwise, the following, similar printed

conceptual diagram is provided.
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B Questionnaires

B.1 Feedback Questionnaire — Task 1

Please provide us with more information about your experience in solving the DES

problem.

Did you complete the solution to your satisfaction? [Yes/No]

Answer the following questions on a scale from 1 (very little) to 5 (very much).

How confident are you in the correctness of your model?

[1 2 3 4 5]

How confident are you in the correctness of the automatically generated supervisors?

[1 2 3 4 5]

How easy was it to learn the problem solving methodology which you used?

[1 2 3 4 5]

How easy was it to apply the problem solving methodology which you used?

[1 2 3 4 5]

What difficulties did you encounter during the process of problem solving?

What aspects of the problem solving process were easy to accomplish?

B.2 Feedback Questionnaire — Task 2

Please provide us with more information about your experience in solving the DES

problem.

Did you complete the solution to your satisfaction? [Yes/No]

Answer the following questions on a scale from 1 (very little) to 5 (very much).
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How confident are you in the correctness of your model?

[1 2 3 4 5]

How confident are you in the correctness of the automatically generated supervisors?

[1 2 3 4 5]

How easy was it to learn the problem solving methodology which you used?

[1 2 3 4 5]

How easy was it to apply the problem solving methodology which you used?

[1 2 3 4 5]

What difficulties did you encounter during the process of problem solving?

What aspects of the problem solving process were easy to accomplish?

Which methodology for solving DES control problems would you use in the future,

given the choice?

[Classical approach/Template Design]

In your opinion, what is the biggest contribution, if any, of the Template Design

methodology to DES problem solving?


