
Region-based method for visually lossless image compression

Lenko Grigorov, grigorov@cs.queensu.ca
CISC 857 Course Project

Abstract:
This report proposes a new method for image compression. The compressed images are visually identical to the originals,
even though some of the information in the images is discarded. This is achieves by using results in the field of Human
Vision Modeling to select the visually significant regions from the images. Two different compression methods are applied,
depending on whether the compressed region is visually significant or not. The method is applicable to all types of images
RGB images – photographs, diagrams, text, and others. A reference implementation is developed and tested on a variety of
examples. For most images the file size is reduced by at least a half.

1. Introduction

Digital images are widely used to store image data, since
they can be easily manipulated with the most versatile
tool – the computer. Unfortunately, uncompressed digital
images occupy a lot of information space, especially
when they consist of multiple channels (bands). Users
appreciate the availability of a number of different
compression methods, which reduce the burden on the
computer resources. The compression methods can be
separated into two categories: lossless and lossy. The
lossless compression methods compact the image data
using fully reversible transformations (usually based on
probabilistic modeling) and give the users the
opportunity to reconstruct the original image completely.
Unfortunately, these methods generally do not achieve
the desired level of reduction of the size of the images.
The lossy methods perform much better, however, they
discard information during the process of compression.
The original image cannot be fully reconstructed from
the compressed data. Clearly, users would prefer to have
a very high level of compression while preserving the
original data, so neither type of compression method is
perfect.

In the case when the digital images will be viewed on the
computer screen, one could define the quality criterion as
“how much the image appears close to the original”. If
the image appears identical to the original, this satisfies
the highest requirement. One could also consider the fact
that not all information present in a digital image would
influence the appearance of the image on the screen.
Thus by eliminating this information, one would be able
to achieve better compression, while the image will
continue to appear identical to the original.

The most widely used compression methods (like JPEG)
strive to achieve minimal loss of information based on
mathematical measurements of difference. The
particularities of the human vision system are often not
taken into account and not used to the advantage. In
certain cases this might not only degrade the image
quality noticeably, but also introduce unwanted artifacts.
In this work I am exploring the possibilities, which a

different approach could bring. I propose a new method
for image compression, which is developed in
accordance to the properties of human vision. The
images reconstructed from the compressed are visually
identical to the originals. This is true for all types of
images – including photographic pictures and pictures of
diagrams and text.

Previous research in the area is summarized very well in
[1], where novel ideas are proposed as well. The human
vision model is examined in [4] and [5]. [2] serves as a
major backgrounder in the area of general image
compression. Work with arbitrarily shaped image regions
is discussed in both [3] and [6], and [3] proposes a very
simple and versatile method for arbitrarily shaped region
traversal. [1] uses the human vision model to enhance the
JPEG2000 compression standard and achieve
outstanding compression results. It served as a great
inspiration, however, the goal of the compression method
proposed here is to achieve visually lossless compression
and thus undertakes a completely different path.

The region-based method compression method works as
follows:

1. The input image (in RGB) is converted to the
YCbCr color space to decorrelate the image
bands.

2. Each band is divided into regions using the
properties of the human vision model. The
regions containing visually significant
information are marked “white” and the rest of
the image is marked “black”.

3. The white regions are compressed using
compression which is appropriate for the
response of the human eye to such regions.

4. The black regions are compressed using low
quality compression, which does not introduce
noticeable artifacts.

5. The final output is compacted further by using
the GZIP universal compression method.

 2

In section 2 of this report I introduce the Human Vision
Model and explain the YCbCr color model. In section 3 I
discuss the methods I use to separate visually significant
regions from the image. Section 4 and 5 describe the
compressions methods used for the two types of image
regions. Section 6 presents the results achieved with a
reference implementation and a short conclusion is
provided in section 7. Appendix A contains a short
manual on how the included software operates.

2. Human Vision Model

The properties of the human vision have been examined
since ancient times. Scientists have been trying to create
a model, describing people’s sight. The contemporary
results, even though not yet decisive, are well
summarized in [4] and similar works. The human color
vision is a very complex process. The physical preceptors
of light in the eye respond to the wavelengths of the red,
green and blue light. However, the signals are combined
before they reach the brain. The signals which are
received by the brain can be described as “what is the
brightness”, “how blue or how yellow it is”, and “how
red or how green it is”. This also explains why humans
do not perceive colors such as “yellow-bluish” or “green-
reddish”. The eye relays the information in the visual
field as changes in these signals over distance in the
plane of vision. The acuity towards the edges of the
visual plane decreases, with color vision decreasing more
rapidly.

We are interested in the properties, which relate to the
visual inspection of an image on the screen. Will there be
changes of the image signal, which will not be noticed by
the viewer? A widely used method to measure the
sensitivity of the eye is the use of special test images
constructed as follows. Stripes of alternating brightness
or color are fit together (see Fig. 1). On one of the axes
the frequency of the stripes per distance unit increases
exponentially. On the other axis, the difference (of
brightness or color) between neighboring stripes
decreases exponentially. A subject looking at the test

images would be able to tell immediately that below a
certain level of difference between the neighboring
stripes, no changes are perceived (the neighboring stripes
appear as a uniform background). Furthermore, this level
varies with the frequency of stripes. Thus a function
describing this behavior can be drawn (see Fig. 1).
Another fact to notice is that this threshold varies with
the overall brightness of the surrounding. I.e. the value is
greatest for medium-brightness surrounding; with the
increase or decrease of the overall brightness of the
surrounding the eye is less sensitive to changes. This
allows us to define a 3D threshold function, which
depends on the spatial frequency of changes, the relative
difference of the changes (delta), and the overall
brightness of the surrounding.

Unfortunately, researches haven’t performed enough
experiments to map this function, partly because it could
be of interest to an area very different from Psychology
and Physiology. In [1] a not very encompassing
experiment is described. Since this function is of
particular interest for the region-based method for image
compression (as discussed in section 3), I decided to
make some measurements to obtain usable values, even
though they might be very inaccurate.

Before I describe these measurements in detail, I will
discuss the YCbCr color model. As already mentioned,
the human brain receives three signals from the eye –
brightness, blueness/yellowness (blue chrominance), and
redness/greenness (red chrominance). These signals
combine to create the human vision color model.
Unfortunately, due to its complexity and the lack of
extensive measurements, this model is not directly
applicable for the description of digital images. The most
widely used color model for digital images is the RGB
(red, green, blue) model, because it directly maps to the
way computer screens display images. Unfortunately, it
is not suitable for experiments examining human vision.
Among the standards defined by [7] is the YCbCr color
model (brightness, blue chrominance, red chrominance),
which approximates much closer how humans see. Its
relation to the human color vision model is discussed in
greater detail in [1]. One of the most important facts to
note is that this model is very suitable for compression
purposes – it achieves very good decorrelation of the
image bands (i.e. the value of a band cannot be predicted
from the values of the other bands). This is the reason
why this model is used for television broadcasting and
for the highly efficient JPEG2000 compression standard.
This is also the reason why the YCbCr model was
selected for use with the compression method proposed
in this work. An example of the YCbCr bands of an can
be seen on Fig. 2.

Figure 1 Perception test picture with threshold function

 3

a

b

c

d

Figure 2 The YCbCr color model. a) Original image;
b) brightness band Y; c) blue chrominance band Cb;
d) red chrominance band Cr

My attempt was to map the 3D sensitivity threshold
function, which was described earlier. Test images (see
Fig. 3) were algorithmically generated. Images were
generated for the Y, the Cb, and the Cr bands. For each
band, three images were generated – for bright
surrounding, medium brightness surrounding, and for
dark surrounding. Each of the nine images was examined
when the stripes were vertical, horizontal, and diagonal
(at 45°). The threshold values for each image were
mapped and then approximated using linear functions.
Since the low resolution and color capability of the
screen, on the medium brightness images usually the
threshold was not met. The missing region was

approximated from the curves of the images at the other
brightness settings.

 a

b c

d e

f g

Figure 3 Exaples of perception test pictures. Rotations
and changes to overall brightness were used with all
bands. a) Y band, medium brightness; b,c) Y band,
horizontal and diagonal stripes; d,e) Y band, increased
and decreased overall brightness; f) Cb band; g) Cr band

Even though the threshold curves for the vertical,
horizontal, and diagonal stripes were not identical, they
were considered similar enough and a single threshold
curve was used for all rotations. All approximations are
very imprecise, however, the goal was to get some
model, which can be immediately used, while accurate
measurements can be taken later and incorporated in the
software at a later stage. The results are shown in the
following box.

 4

All measurements were performed using a high-quality
17” Optiquest V775 monitor at the resolution 1024×768.
The correct ICC color profile for the monitor was used
and the brightness and contrast settings were adjusted
according to the Adobe Gamma correction tool.
Unfortunately, the results remain only referential,
because of the limited conditions examined (no other
screen resolutions) and because I was the only test
subject.

3. Selection of image regions

Having approximated the threshold function as described
in the previous section, it can be applied to separate the
regions of the image where the human eye would be able
to perceive noticeable changes. There are three threshold
functions, for the Y, Cb, and Cr bands respectively, so
they can be separately applied to the corresponding
bands. Since the threshold function used is the only
difference, the selection of regions is described for a
single band only.

The image (band) is divided into two types of regions.
The white regions describe pixels with visually
significant information – such as sharp edges. These
regions are governed by the area beyond the threshold
function, which simply means that the observer will
perceive a sharp change in the image (be it change of
brightness or change of chrominance). The black regions
describe the rest of the image. They are governed by the

area below the perception threshold, which simply means
that the observer might notice changes, but they will be
very gradual and appear blurry. See Fig. 4 for an example
of the regions selected for an image. Clearly, the black
regions can be compressed with loss of information while
they would still appear identical to the original.

Why would one use only two types of regions? The
sensitivity of the human eye is different to different
amounts of changes in the image, so one could possibly
use different gray levels to smooth-out the sharp
transition defined by the threshold function and thus
more closely represent the observer’s perception.
Considering however, that the regions are created for the
purposes of image compression, the main goal should be
the compactness of information. The regions can be of
arbitrary shape and thus cannot be described
satisfactorily via simple geometric constructs. Since the
decompression method needs to know which pixels of
the image belong to what type of region, a mapping of
the regions has to be included in the compressed stream.

A bitmap of the image, where white pixels stand for
white regions and black pixels stand for black regions is
the most compact way to do this. Furthermore, the
definition of the threshold function lends itself to the bi-
polar separation.

Technical

Function used to generate the test images (600×400):
width of stripes = 100/1.95X/100
delta of stripes = 256/1.1Y/3.5

Linear approximations of threshold function (in terms of x,y from the test image):
Y band
FY=αy, where y = −0.91x+881 if x>414
 y = 0.22x+413 otherwise and
 α = (1.02β+282)/413 if β<128
 α = (−1.93β+660)/413 otherwise
Cb band
FCb=αy, where y = −0.39x+493 if x> 393
 y = −0.09x+374 otherwise and
 α = (0.97β+250)/374 if β<128
 α = (−0.59β+450)/374 otherwise
Cr band
FCr=αy, where y = −0.2x+489 if x> 415
 y = −0.11x+452 otherwise and
 α = (1.93β+205)/452 if β<128
 α = (−1.93β+699)/452 otherwise
where β is the average brightness of the surrounding on the scale from 0 to 255

 5

a

b

c

d

Figure 4 Black and white region selection. a) Y band;
b) Cb band; c) Cr band; d) original image

The approach used for the division of the image into
black and white regions is based on the gradient of the
image (band). Indeed, the higher the gradient, the bigger
is the delta of the relative change in the image and thus
the stronger the visual perception of the change. So
applying a threshold to the gradient would immediately
result in the creation of white and black regions,
according to our needs. As was discussed earlier,
however, the threshold value for the human vision model
depends not only on the delta (gradient), but also on the
spatial frequency of changes, the average brightness of
the surrounding, and on the orientation of the changes
(the latter is not modeled). Thus it is needed to adjust the
gradient according to the other criteria before applying
the thresholding.

The adjustment according to the spatial frequency is
executed on the Fourier transform of the image (band).
This transform provides a very convenient method for

Technical

Calculation of the x coordinate for the
perception test image from the position in
the Fourier transform (xt,yt).

The vector passes through all
spatial frequencies in the image in the given
direction. At the tip of the vector are the
highest frequencies (with wavelengths of two
pixels). At the origin are the frequencies with wavelengths of the extension of the whole image
in this direction. Thus by obtaining the ratio between the lengths of the vector
and the vector, we can compute what is the wavelength at point (xt,yt).
First, the two lengths of the vectors and are calculated (vectors in the
given direction, which go to the boundaries of the image along each axis):

length_to_x = d×width/abs(xt)
length_to_y = d×height/abs(yt)

where d is the length of the (xt,yt) vector.

The shorter of the two is selected (total_length) and used to calculate the wavelength:

wl = total_length/(2*d)

Having the wavelength, x for the perception test image is calculated by the formula:

x = 100×log1.95(100/wl)

0,0 xt,yt

Fourier transform

 6

work with the frequency components. The image
transform is scanned pixel by pixel and for each
coordinate, the x value for the test image is calculated
(see section 2 for the description of the test image).
Having the x value, the y threshold value of the test
image can be calculated. If we consider the maximal y
threshold value as a unit, we can obtain a multiplication
coefficient, which can be used to suppress the spatial
frequency change at the given coordinate of the Fourier
transform. The result would be the flattening of the
threshold curve, which is what is needed. Unfortunately,
a close examination of the thresholding functions
presented in section 2 would reveal that the threshold
happens at delta values which for the most part are not
achievable on a computer monitor with 255 levels of the
brightness or chrominance signal. Furthermore, this
method for Fourier transformation modifications is not
verified to be correct and was implemented only as an
experiment. The results show that the proposed
adjustment does not play any significant role to the
selection of regions (approximately 1 pixel in each 70000
pixels of the examined images). Thus an implementation
is included, but it is not used for the compression
method.

The adjustment of the gradient according to the average
brightness of the surrounding is much simpler to achieve.
For each pixel of the Y band the average value of the 3-
by-3 neighborhood is calculated. This is used as the β for
the calculation of the adjustment coefficient α as
described in section 2. Multiplying the image gradient at
each pixel by the α for this pixel results in the flattening
of the threshold curve along the “average brightness of
the surrounding” axis.

After the gradient has been adjusted, a flat threshold
value can be applied across the whole image (band) and
the resulting division to black and white regions
constitutes the desired extraction of visually significant
regions. The threshold value can be chosen, depending
on the desired level of detail preservation (the higher
threshold value increases the black regions and preserves
less detail). Experimentally it was observed that a
threshold value of 0.1 produces satisfactory results. As
discussed in the next sections, setting this value too low
(less than 0.05) or too high (more than 0.15) would result
in unwanted image degradation due to the compression
methods used.

It is also important to note that for this method the
gradient is calculated using a modified Sobel operator (a
compacted Sobel operator). The horizontal and vertical
filters are respectively

 1 2 1 and 1 −1 .
 −1 −2 −1 2 −2
 1 −1

This modification is required, because the original Sobel
operator does not consider 1-pixel differences in the
image.

4. Compression of visually significant regions

The white regions contain visually significant
information and thus it is desirable that any compression
method applied to the pixels belonging there does not
cause unwanted loss of detail. As discussed in section 3,
the white regions are selected based on the value of the
gradient (i.e. the gradient has a large value). This implies
that there are big differences in the values of the
neighboring pixels. The human sight loses precision with
the increase of stimulus. In other words, the eye cannot
tell between small variations of large differences – the
same way people can tell there is a big difference
between $1 and $2, but tend to disregard the difference
between $200,010 and $200,020.

Experiments showed that the two least significant bits of
pixels in the white regions for both the brightness and the
chrominance bands do not play a role for the visual
discrimination between the original and the compressed
image. Thus for all pixels in the white regions the two
least significant bits are discarded.

As suggested in [2], the coding of each bitplane
separately could offer a better level of compression. A
bitplane consists of the bits of all pixels in the image at a
certain level of significance – for example, all most
significant bits. To achieve a better compressability, the
pixel values are coded first using the so-called gray code.
The code is calculated using:

gm = bm
gi = bi ⊗ bi+1 for 0<i<m

where m is the number of bits used to represent the
number, bi are the original bits, gi are the bits of the gray
code representation, and ⊗ is the XOR operation.

The gray code is a reversible function, which produces
binary representation of numbers in a way such that for
numbers, whose difference is one, there is only one
different bit in their binary representations. This can be
illustrated by considering 7 and 8. The binary
representation of 7 is 0111. The binary representation of
8 is 1000. Even though the numbers are very close (their
difference is 1), their standard binary representation
differs along all bits. However, the gray codes
corresponding to 7 and 8 are: 0100 and 1100. The
difference is in a single bit only.

By gray-coding the pixel values before compression
results in a greater chance that neighboring pixels in the
image will have same bits in a given bitplane.
Compressing large regions with same values results in a
much better compression ratio.

 7

Summarizing, the following method for compression of
the white regions is used: gray-code the pixel values and
then output the 6 most significant bitplanes separately.

This method, however, poses a limitation to the threshold
value which is used to select the visually significant
regions. If the value is set too low, regions with a smaller
gradient will be compressed and the two least significant
bits discarded. This can result in significant degradation
of the image, since the bit discarding is acceptable only
when the gradient is sufficiently high. A threshold value
of less than 0.05 is not recommended.

5. Compression of the visually less significant
regions

The compression of the black regions is a more
sophisticated process than the compression of white
regions, since there is greater freedom in discarding
visually insignificant information. As discussed in
section 3, the gradient in the black regions is very small
and the human eye perceives only smooth changes in
such regions. A method which can be successfully used
in these circumstances is the prediction-based coding.

The prediction-based coding works as follows: after each
pixel is coded, a predictor is queried about the value of
the next pixel. The predictor provides a prediction, which
is then compared with the actual value of the pixel. The
comparison provides the prediction error, which is then
used for compression. After the pixel is processed, the
predictor is updated with the actual value of the pixel and
the compression proceeds with the next iteration.
Depending on how successful the predictor is, the
prediction errors can be very small and thus much fewer
bits could be used to code each pixel. The black regions
have a small gradient and thus the prediction-based
coding is very suitable – pixel values can be predicted
accurately from their neighborhoods. In order to increase
the chance of successful prediction, additionally the
black regions can be blurred before the start of
compression. This is acceptable, since the observers
already perceive the regions as blurred. Experiments
showed, however, that heavy blurring becomes
noticeable. Thus the following filter was selected for
convolution with the image (band):

 1 1 1
 1 9 1 × (1/17)
 1 1 1

Since the black regions can have arbitrary shape, the
definitions of neighborhoods had to be changed
accordingly. A same-region neighborhood consists of all
pixels from the standard neighborhood, which lie in a
black region. Both the convolution and the prediction use
this modified notion of neighborhoods.

After blurring the black regions, the prediction-based
coding becomes even more efficient. The expected
prediction error is small, however, in certain cases it can
be quite big. If a fixed number of bits is reserved for the
coding of the prediction errors, then is has to be
sufficiently large to describe the greatest possible error
(unless we accept that the prediction errors can be
recorded inaccurately). Having a large number of bits for
the prediction error, however, degrades the performance
of the compression, since one expects that the predictor
will be successful most of the time. Thus a variable
length binary coding for the prediction error was
selected.

Experiments showed that the Y band can be compressed
much more efficiently than the Cb and Cr bands. It was
discovered that even a single-bit inaccuracy in the
description of the chrominance bands leads to a
perceptible “coloring” of the image in the black regions.
Unlike the white regions, where inaccuracy is
compensated for by the high gradient, the black regions
have smooth areas and the eye is capable to detect the
overall change of color easily. On the other hand, the
overall change of brightness is not detected so easily.
These results are also supported by the thresholding
functions described in section 2. The above facts led to
the selection of two different coding methods, depending
on whether the brightness band or the chrominance bands
are coded.

For the coding of the Y band, the prediction error is
quantized (with a step of 2) before writing to the output.
This does not result in perceivable degradation of the
image. Due to the quantization, the values written out are
expected to be small and the variable length binary
coding used is designed to favor small values (see the
table below).

Code for Y band Code for Cb and Cr bands
Range of
number

Bit representation Range of
number

Bit representation

0

[−2;2]

else

0

10xy
if positive, x=1
else x=0,
y = bit
representation of
(abs(value) −1)

11xy...y
if positive, x=1
else x=0
y...y = bit
representation of
abs(value)
 # of bits
governed by the
maximal
prediction error
possible

0
1

−1

[−5;5]

else

00
11
01

100xyy
if positive, x=1
else x=0,
yy = bit
representation of
(abs(value) −2)

101xy...y
if positive, x=1
else x=0
y...y = bit
representation of
abs(value)
 # of bit governed
by the maximal
prediction error
possible

 8

For the coding of the Cb and Cr bands, the prediction
error is not quantized and a different coding scheme is
used. The variable length binary coding is adjusted to
larger expected prediction error (see the table on the
previous page).

Unlike with the standard prediction-based coding, where
the image is scanned pixel after pixel, in this case the
coded regions have arbitrary shape. Thus a method
suitable for the traversal of an arbitrary region is
required. In [3] such a method is described. Before a
pixel is processed, all of its same-region neighbors which
have not been processed so far are pushed into a FIFO
structure. After the pixel is processed, the next pixel is
retrieved from the FIFO structure. In this simple manner,
regions of arbitrary shape can be traversed. Experiments
were done with 4-neighborhoods and 8-neighborhoods.
The experiments were not very extensive, however, it
appears that 4-neighborhoods offer a slightly better
compression ratios in the general case.

Two types of predictors have been used: a sliding
window predictor (used in standard prediction-based
coding), and a neighborhood predictor. The sliding
window predictor uses the average of the last 10 values
to predict the new value. The neighborhood predictor
uses the average of the already processed same-region
neighbors for the same purpose. As expected, the
neighborhood predictor is much more accurate. Used on
a single photographic image, the sliding window had a
standard deviation of 5.83 for the Y band and 6.42 for the
Cb band, while the neighborhood predictor had a
standard deviation of 3.85 for the Y band and 2.61 for the
Cb band. This resulted in choosing the neighborhood
predictor. For each black region, the predictor is
initialized with the first byte of the region. This byte is
stored in the output stream directly.

Summarizing, the following method for compression of
the black regions is used: for each black region initialize
the neighborhood predictor with the first pixel in the
region, then traverse the region and output the prediction
errors for the pixels. If the Y band is compressed, the
prediction errors are quantized. The prediction errors are
coded with a variable length binary code, which is
different for the brightness band and the chrominance
bands.

This method, however, poses a limitation to the threshold
value which is used to select the visually significant
regions. If the value is set too high, regions with a large
gradient will be blurred and this will result in image
degradation. Furthermore, a greater number of bits will
have to be reserved for the prediction error and this will
decrease the compression ratio. A threshold value greater
than 0.15 is not recommended.

6. Results

The results achieved with the reference implementation
are not completely disappointing, even though they do
not match the results in [1]. For the test images, a
compression of at least 50% over the uncompressed
images was achieved. Please refer to the given table for
details. In all cases, however, there was no visible image
degradation. This has less significance in photographic
images, where JPEG-style compressors have outstanding
performances (high compression with little visible image
degradation). However, the proposed region-based
method is applicable also to images of vector clipart,
diagrams, text, etc. where the JPEG compression is
known to introduce unwanted artifacts. Since it is based
on the human vision model, it is completely versatile.

A table with the results of compression, as well as the
test images are given below. The images have reduced in
size.

 Dcp.jpg

 Grad.tif

 Infra.tif

 9

 Kingston.jpg Ppts.tif test.tif

Waldo1.bmp Waldo2.tif
 (Waldo1.bmp reduced in half)

Name of image Uncompressed size TIFF compressed
(lossless)

JPEG compressed
(highest quality)

Region-based
compressed

Dcp.jpg 5.88 MB 6.53 MB 1.89 MB 2.74 MB

Grad.tif 301 KB 126 KB 30.2 KB 13 KB

Infra.tif 362 KB 35.4 KB 41.3 KB 17.9 KB

Kingston.jpg 524 KB 548 KB 139 KB 209 KB

Pptsm.tif 647 KB 60.6 KB 143 KB 62.8 KB

Test.tif 11.3 KB 1.5 KB 1.45 KB 0.86 KB

Waldo1.bmp 6.32 MB 6.99 MB 2.25 MB 3.15 MB

Waldo2.tif 1.58 MB 1.83 MB 674 KB 927 KB

 10

The method performed poorly with well-compressable
images, since in addition to the compressed data it has to
store the region bitmaps for the three bands. As expected,
the JPEG compression proved to be more desirable for
high-frequency images (photographic images), where the
slight degradation is visually acceptable.

a

b

Figure 5 Comparison of quality. a) image compressed
with JPEG (an artefact line can be seen above the dark
region); b) same image compressed with the region-
based method (degradation is not visible).

a b

Figure 6 Comparison of quality. a) image compressed
with JPEG (arrow has blurred edges); same image
compressed with region-based method (edges remain
sharp).

a b c

Figure 7 Comparison of quality. a) image compressed
with JPEG (hat and stripes are blurred, change of color);
b) original image; c) same image compressed with
region-based method (degradation not visible).

The implementation used for the testing of the method
consists of a number of separate modules, some written
in Java and others in Matlab. Thus it is virtually
impossible to predict what is the time complexity of the
implementation relative to other methods for
compression. The JPEG compression processes an image

in a single pass, while the proposed method has to make
a number of passes. On the other hand, most of the
calculations involve very simple operations. The space
complexity of the method also exceeds that of JPEG,
since the bitmap of the regions is required in addition to
the image data. Thus the timings provided below are
stated simply for the purpose of relative comparison
between executions of the reference implementation. The
results were obtained using a VIA C3 766MHz
processor, 128MB SDRAM machine with Microsoft
Widows XP.

Name of
image

Compression
(in sec.)

Decompression
(in sec.)

Size
(in pixels)

Dcp.jpg 887 462 1760×1168
Grad.tif 82 45 400×250
Infra.tif 80 49 451×274

Kingston.jpg 98 54 474×377
Pptsm.tif 155 85 564×391

Test.tif 17 16 28×50
Waldo1.bmp 1503 455 1265×1745

Waldo2.tif 243 121 633×873

Note: the compressed images appear to be slightly more
greenish than the originals. This is due to the imperfect
RGB→YCbCr→RGB conversion. The compression
method uses the intermediary files with the Y, Cb, and Cr
bands (please see Appendix A). Thus for correctness, the
output should be compared with these images and not
with the RGB original. The implementation uses the
built-in JAI colorspace converter. A better YCbCr
separation should be used to achieve better results.

7. Conclusion

The proposed method for region-based visually lossless
compression combines results from different fields of
research to offer a way to compress digital images
without any loss of visually significant information. The
user would not be able to tell a difference between the
original and the reconstructed images when they are
displayed on the screen. The properties of the Human
Vision Model are employed to take advantage of
different ways to reduce the visually insignificant data in
the compressed image. The YCbCr color model is used,
both because of its suitability for compression and
because of its resemblance of how people see. Each band
is divided into regions with visually significant data and
with visually less significant data. The regions are coded
using the most appropriate coding method to achieve
high compression performance. The size of the
compressed images is reduced at least by half. The
method is applicable to all types of images, since it takes
into account the properties of the human sight rather than
mathematical definitions of closeness.

 11

This work serves only as an introduction of this method
and many possible improvements are not considered. The
proposed modification of the Fourier transform does not
yield useful results, so another method has to be applied.
The additional employment of mathematical
approximation models might also improve the
performance. Yet higher compression ratio can be
achieved by the use of noise modeling as discussed in
[1]. Improvements on all parts of the algorithm are also
possible – resulting in higher speed and/or better
compression.

References

1. Nadenau M., Integration of human color vision
models into high quality image compression,
Thesis #2296, Federal Technical University of
Lausanne, 2000

2. Gonzalez R., Woods R., Digital image
processing, 2nd ed, Prentice Hall, 2002

3. Fernandez i Ubiergo G., Lossless region-based
multispectral image compression, Image
Processing and Its Applications Conference,
Dublin, Ireland, 1997, vol. 1, pp. 64-68

4. Coren S., Ward L., Enns J., Sensation and
Perception, 5th ed, Harcourt Brace College
Publishers, 1999

5. Padgham C., Saunders, J., The Perception of
Light and Color, Academic Press Inc., New
York, 1975

6. Chang S., Messerschmitt D., Transform Coding
of Arbitrarily-Shaped Image Segments, In
proceedings of first ACM international
conference on Multimedia, Anaheim,
California, 1993, ACM Press, pp. 83-90

7. YCbCr Color Model, ITU-R BT.601
Recommendation, International
Telecommunication Union,
http://www.itu.int

 12

Appendix A

Manual for the reference implementation

The method is implemented using two development environments: Java and Matlab. The following additions to the standard
distributions are needed: for Java – JAI and the JAI ICC profiles; for Matlab – IPT. Please note that a beta version of JAI
was used, so the function with newer versions is not guaranteed. The required ICC color profiles are included with the
distribution of my implementation.

Generation of the perception test pictures

All test images, as well as the code needed to generate them in included in the “perception” subfolder. The raw data from
the measurements is available in the Excel file there.

Compression

1. Input – RGB images ONLY
2. Name of input file: “filename.tif” (TIFF/JPEG/BMP accepted) “filename” is without extension!
3. Separation to YCC

a. java YCCSeparator filename.tif filename
b. output – filenameY.tif, filenameCb.tif, filenameCr.tif (grayscale of each band)

4. Selection of regions
a. In Matlab, run “regions(‘filename’)”
b. Output – filenameYR.tif, filenameCbR.tif, filenameCrR.tif (bitmaps with regions)

5. Compression
a. java RegionCodec –c 0.1 filename
b. intermediary outputs – filename.cod, filenamei.cod (data, initial pixels for predictor)
c. output – filename.rbc (GZIP compressed region bitmaps and the intermediary files)

6. Output of YCC separation can be removed.

Decompression

1. Input – “filename.rcb” image obtained from compression, “filename” is without extension!
2. Decompression

a. java RegionCodec –d 0.1 filename
b. intermediary files – filename.cod, filenamei.cod, filenameYR.tif, filenameCbR.tif, filenameCrR.tif (data,

initial pixels for predictor, bitmaps with regions)
c. output – filename_Y.tif, filename_Cb.tif, filename_Cr.tif (grayscale of YCC bands)

3. Merging of bands
a. java YCCSeparator –m filename_ (underscore is required)
b. output – filename_.tif (reconstructed RGB image)

4. Output of decompression can be removed.

The above procedures are automated by the “compress” and “decompress” functions for Matlab (can be used only under
MS Windows). Invoke with “compress(‘filename.tif’)” (or .jpg/.bmp) and “decompress(‘filename’)”
(without extension). These functions also provide timing. Both functions accept the threshold value as a second parameter,
but it is optional. If it is used, the decompression has to be invoked with the same value which was used for the
compression.

Further documentation can be found in the source files.

