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Abstract: 
This report proposes a new method for image compression. The compressed images are visually identical to the originals, 
even though some of the information in the images is discarded. This is achieves by using results in the field of Human 
Vision Modeling to select the visually significant regions from the images. Two different compression methods are applied, 
depending on whether the compressed region is visually significant or not. The method is applicable to all types of images 
RGB images – photographs, diagrams, text, and others. A reference implementation is developed and tested on a variety of 
examples. For most images the file size is reduced by at least a half. 

1. Introduction 

Digital images are widely used to store image data, since 
they can be easily manipulated with the most versatile 
tool – the computer. Unfortunately, uncompressed digital 
images occupy a lot of information space, especially 
when they consist of multiple channels (bands). Users 
appreciate the availability of a number of different 
compression methods, which reduce the burden on the 
computer resources. The compression methods can be 
separated into two categories: lossless and lossy. The 
lossless compression methods compact the image data 
using fully reversible transformations (usually based on 
probabilistic modeling) and give the users the 
opportunity to reconstruct the original image completely. 
Unfortunately, these methods generally do not achieve 
the desired level of reduction of the size of the images. 
The lossy methods perform much better, however, they 
discard information during the process of compression. 
The original image cannot be fully reconstructed from 
the compressed data. Clearly, users would prefer to have 
a very high level of compression while preserving the 
original data, so neither type of compression method is 
perfect. 

In the case when the digital images will be viewed on the 
computer screen, one could define the quality criterion as 
“how much the image appears close to the original”. If 
the image appears identical to the original, this satisfies 
the highest requirement. One could also consider the fact 
that not all information present in a digital image would 
influence the appearance of the image on the screen. 
Thus by eliminating this information, one would be able 
to achieve better compression, while the image will 
continue to appear identical to the original. 

The most widely used compression methods (like JPEG) 
strive to achieve minimal loss of information based on 
mathematical measurements of difference. The 
particularities of the human vision system are often not 
taken into account and not used to the advantage. In 
certain cases this might not only degrade the image 
quality noticeably, but also introduce unwanted artifacts. 
In this work I am exploring the possibilities, which a 

different approach could bring. I propose a new method 
for image compression, which is developed in 
accordance to the properties of human vision. The 
images reconstructed from the compressed are visually 
identical to the originals. This is true for all types of 
images – including photographic pictures and pictures of 
diagrams and text. 

Previous research in the area is summarized very well in 
[1], where novel ideas are proposed as well. The human 
vision model is examined in [4] and [5]. [2] serves as a 
major backgrounder in the area of general image 
compression. Work with arbitrarily shaped image regions 
is discussed in both [3] and [6], and [3] proposes a very 
simple and versatile method for arbitrarily shaped region 
traversal. [1] uses the human vision model to enhance the 
JPEG2000 compression standard and achieve 
outstanding compression results. It served as a great 
inspiration, however, the goal of the compression method 
proposed here is to achieve visually lossless compression 
and thus undertakes a completely different path. 

The region-based method compression method works as 
follows: 

1. The input image (in RGB) is converted to the 
YCbCr color space to decorrelate the image 
bands. 

2. Each band is divided into regions using the 
properties of the human vision model. The 
regions containing visually significant 
information are marked “white” and the rest of 
the image is marked “black”. 

3. The white regions are compressed using 
compression which is appropriate for the 
response of the human eye to such regions.  

4. The black regions are compressed using low 
quality compression, which does not introduce 
noticeable artifacts. 

5. The final output is compacted further by using 
the GZIP universal compression method. 
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In section 2 of this report I introduce the Human Vision 
Model and explain the YCbCr color model. In section 3 I 
discuss the methods I use to separate visually significant 
regions from the image.  Section 4 and 5 describe the 
compressions methods used for the two types of image 
regions. Section 6 presents the results achieved with a 
reference implementation and a short conclusion is 
provided in section 7. Appendix A contains a short 
manual on how the included software operates. 

2. Human Vision Model 

The properties of the human vision have been examined 
since ancient times. Scientists have been trying to create 
a model, describing people’s sight. The contemporary 
results, even though not yet decisive, are well 
summarized in [4] and similar works. The human color 
vision is a very complex process. The physical preceptors 
of light in the eye respond to the wavelengths of the red, 
green and blue light. However, the signals are combined 
before they reach the brain. The signals which are 
received by the brain can be described as “what is the 
brightness”, “how blue or how yellow it is”, and “how 
red or how green it is”. This also explains why humans 
do not perceive colors such as “yellow-bluish” or “green-
reddish”. The eye relays the information in the visual 
field as changes in these signals over distance in the 
plane of vision. The acuity towards the edges of the 
visual plane decreases, with color vision decreasing more 
rapidly. 

We are interested in the properties, which relate to the 
visual inspection of an image on the screen. Will there be 
changes of the image signal, which will not be noticed by 
the viewer? A widely used method to measure the 
sensitivity of the eye is the use of special test images 
constructed as follows. Stripes of alternating brightness 
or color are fit together (see Fig. 1). On one of the axes 
the frequency of the stripes per distance unit increases 
exponentially. On the other axis, the difference (of 
brightness or color) between neighboring stripes 
decreases exponentially. A subject looking at the test 

images would be able to tell immediately that below a 
certain level of difference between the neighboring 
stripes, no changes are perceived (the neighboring stripes 
appear as a uniform background). Furthermore, this level 
varies with the frequency of stripes. Thus a function 
describing this behavior can be drawn (see Fig. 1). 
Another fact to notice is that this threshold varies with 
the overall brightness of the surrounding. I.e. the value is 
greatest for medium-brightness surrounding; with the 
increase or decrease of the overall brightness of the 
surrounding the eye is less sensitive to changes. This 
allows us to define a 3D threshold function, which 
depends on the spatial frequency of changes, the relative 
difference of the changes (delta), and the overall 
brightness of the surrounding. 

Unfortunately, researches haven’t performed enough 
experiments to map this function, partly because it could 
be of interest to an area very different from Psychology 
and Physiology. In [1] a not very encompassing 
experiment is described. Since this function is of 
particular interest for the region-based method for image 
compression (as discussed in section 3), I decided to 
make some measurements to obtain usable values, even 
though they might be very inaccurate. 

Before I describe these measurements in detail, I will 
discuss the YCbCr color model. As already mentioned, 
the human brain receives three signals from the eye – 
brightness, blueness/yellowness (blue chrominance), and 
redness/greenness (red chrominance). These signals 
combine to create the human vision color model. 
Unfortunately, due to its complexity and the lack of 
extensive measurements, this model is not directly 
applicable for the description of digital images. The most 
widely used color model for digital images is the RGB 
(red, green, blue) model, because it directly maps to the 
way computer screens display images. Unfortunately, it 
is not suitable for experiments examining human vision. 
Among the standards defined by [7] is the YCbCr color 
model (brightness, blue chrominance, red chrominance), 
which approximates much closer how humans see. Its 
relation to the human color vision model is discussed in 
greater detail in [1]. One of the most important facts to 
note is that this model is very suitable for compression 
purposes – it achieves very good decorrelation of the 
image bands (i.e. the value of a band cannot be predicted 
from the values of the other bands). This is the reason 
why this model is used for television broadcasting and 
for the highly efficient JPEG2000 compression standard. 
This is also the reason why the YCbCr model was 
selected for use with the compression method proposed 
in this work. An example of the YCbCr bands of an can 
be seen on Fig. 2. 

Figure 1 Perception test picture with threshold function
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Figure 2 The YCbCr color model. a) Original image; 
b) brightness band Y; c) blue chrominance band Cb; 
d) red chrominance band Cr 

 

My attempt was to map the 3D sensitivity threshold 
function, which was described earlier. Test images (see 
Fig. 3) were algorithmically generated. Images were 
generated for the Y, the Cb, and the Cr bands. For each 
band, three images were generated – for bright 
surrounding, medium brightness surrounding, and for 
dark surrounding. Each of the nine images was examined 
when the stripes were vertical, horizontal, and diagonal 
(at 45°). The threshold values for each image were 
mapped and then approximated using linear functions. 
Since the low resolution and color capability of the 
screen, on the medium brightness images usually the 
threshold was not met. The missing region was 

approximated from the curves of the images at the other 
brightness settings. 

 a 

b     c 

d    e 

f    g 

Figure 3 Exaples of perception test pictures. Rotations 
and changes to overall brightness were used with all 
bands. a) Y band, medium brightness; b,c) Y band, 
horizontal and diagonal stripes; d,e) Y band, increased 
and decreased overall brightness; f) Cb band; g) Cr band 

 

Even though the threshold curves for the vertical, 
horizontal, and diagonal stripes were not identical, they 
were considered similar enough and a single threshold 
curve was used for all rotations. All approximations are 
very imprecise, however, the goal was to get some 
model, which can be immediately used, while accurate 
measurements can be taken later and incorporated in the 
software at a later stage. The results are shown in the 
following box. 
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All measurements were performed using a high-quality 
17” Optiquest V775 monitor at the resolution 1024×768. 
The correct ICC color profile for the monitor was used 
and the brightness and contrast settings were adjusted 
according to the Adobe Gamma correction tool. 
Unfortunately, the results remain only referential, 
because of the limited conditions examined (no other 
screen resolutions) and because I was the only test 
subject. 

3. Selection of image regions 

Having approximated the threshold function as described 
in the previous section, it can be applied to separate the 
regions of the image where the human eye would be able 
to perceive noticeable changes. There are three threshold 
functions, for the Y, Cb, and Cr bands respectively, so 
they can be separately applied to the corresponding 
bands. Since the threshold function used is the only 
difference, the selection of regions is described for a 
single band only. 

The image (band) is divided into two types of regions. 
The white regions describe pixels with visually 
significant information – such as sharp edges. These 
regions are governed by the area beyond the threshold 
function, which simply means that the observer will 
perceive a sharp change in the image (be it change of 
brightness or change of chrominance). The black regions 
describe the rest of the image. They are governed by the 

area below the perception threshold, which simply means 
that the observer might notice changes, but they will be 
very gradual and appear blurry. See Fig. 4 for an example 
of the regions selected for an image. Clearly, the black 
regions can be compressed with loss of information while 
they would still appear identical to the original. 

Why would one use only two types of regions? The 
sensitivity of the human eye is different to different 
amounts of changes in the image, so one could possibly 
use different gray levels to smooth-out the sharp 
transition defined by the threshold function and thus 
more closely represent the observer’s perception. 
Considering however, that the regions are created for the 
purposes of image compression, the main goal should be 
the compactness of information. The regions can be of 
arbitrary shape and thus cannot be described 
satisfactorily via simple geometric constructs. Since the 
decompression method needs to know which pixels of 
the image belong to what type of region, a mapping of 
the regions has to be included in the compressed stream.  

A bitmap of the image, where white pixels stand for 
white regions and black pixels stand for black regions is 
the most compact way to do this. Furthermore, the 
definition of the threshold function lends itself to the bi-
polar separation. 

 
Technical 
 
Function used to generate the test images (600×400): 
width of stripes = 100/1.95X/100 
delta of stripes = 256/1.1Y/3.5 
 
Linear approximations of threshold function (in terms of x,y from the test image): 
Y band 
FY=αy, where y = −0.91x+881 if x>414 
  y = 0.22x+413  otherwise and 
  α = (1.02β+282)/413  if β<128 
  α = (−1.93β+660)/413 otherwise 
Cb band 
FCb=αy, where y = −0.39x+493 if x> 393 
  y = −0.09x+374 otherwise and 
  α = (0.97β+250)/374  if β<128 
  α = (−0.59β+450)/374 otherwise 
Cr band 
FCr=αy, where y = −0.2x+489  if x> 415 
  y = −0.11x+452 otherwise and 
  α = (1.93β+205)/452  if β<128 
  α = (−1.93β+699)/452  otherwise 
where β is the average brightness of the surrounding on the scale from 0 to 255 
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Figure 4 Black and white region selection. a) Y band; 
b) Cb band; c) Cr band; d) original image 

The approach used for the division of the image into 
black and white regions is based on the gradient of the 
image (band). Indeed, the higher the gradient, the bigger 
is the delta of the relative change in the image and thus 
the stronger the visual perception of the change. So 
applying a threshold to the gradient would immediately 
result in the creation of white and black regions, 
according to our needs. As was discussed earlier, 
however, the threshold value for the human vision model 
depends not only on the delta (gradient), but also on the 
spatial frequency of changes, the average brightness of 
the surrounding, and on the orientation of the changes 
(the latter is not modeled). Thus it is needed to adjust the 
gradient according to the other criteria before applying 
the thresholding. 

The adjustment according to the spatial frequency is 
executed on the Fourier transform of the image (band). 
This transform provides a very convenient method for 

 
Technical 

 
Calculation of the x coordinate for the 
perception test image from the position in 
the Fourier transform (xt,yt). 
 
The   vector passes through all 
spatial frequencies in the image in the given 
direction. At the tip of the vector are the 
highest frequencies (with wavelengths of two 
pixels). At the origin are the frequencies with wavelengths of the extension of the whole image 
in this direction. Thus by obtaining the ratio between the lengths of the   vector 
and the   vector, we can compute what is the wavelength at point (xt,yt). 
First, the two lengths of the vectors  and   are calculated (vectors in the 
given direction, which go to the boundaries of the image along each axis): 
 

length_to_x = d×width/abs(xt) 
length_to_y = d×height/abs(yt) 

where d is the length of the (xt,yt) vector. 
 
The shorter of the two is selected (total_length) and used to calculate the wavelength: 

wl = total_length/(2*d) 
 
Having the wavelength, x for the perception test image is calculated by the formula: 

x = 100×log1.95(100/wl) 

0,0 xt,yt 

Fourier transform 
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work with the frequency components. The image 
transform is scanned pixel by pixel and for each 
coordinate, the x value for the test image is calculated 
(see section 2 for the description of the test image). 
Having the x value, the y threshold value of the test 
image can be calculated. If we consider the maximal y 
threshold value as a unit, we can obtain a multiplication 
coefficient, which can be used to suppress the spatial 
frequency change at the given coordinate of the Fourier 
transform. The result would be the flattening of the 
threshold curve, which is what is needed. Unfortunately, 
a close examination of the thresholding functions 
presented in section 2 would reveal that the threshold 
happens at delta values which for the most part are not 
achievable on a computer monitor with 255 levels of the 
brightness or chrominance signal. Furthermore, this 
method for Fourier transformation modifications is not 
verified to be correct and was implemented only as an 
experiment. The results show that the proposed 
adjustment does not play any significant role to the 
selection of regions (approximately 1 pixel in each 70000 
pixels of the examined images). Thus an implementation 
is included, but it is not used for the compression 
method. 

The adjustment of the gradient according to the average 
brightness of the surrounding is much simpler to achieve. 
For each pixel of the Y band the average value of the 3-
by-3 neighborhood is calculated. This is used as the β for 
the calculation of the adjustment coefficient α as 
described in section 2. Multiplying the image gradient at 
each pixel by the α for this pixel results in the flattening 
of the threshold curve along the “average brightness of 
the surrounding” axis. 

After the gradient has been adjusted, a flat threshold 
value can be applied across the whole image (band) and 
the resulting division to black and white regions 
constitutes the desired extraction of visually significant 
regions. The threshold value can be chosen, depending 
on the desired level of detail preservation (the higher 
threshold value increases the black regions and preserves 
less detail). Experimentally it was observed that a 
threshold value of 0.1 produces satisfactory results. As 
discussed in the next sections, setting this value too low 
(less than 0.05) or too high (more than 0.15) would result 
in unwanted image degradation due to the compression 
methods used. 

It is also important to note that for this method the 
gradient is calculated using a modified Sobel operator (a 
compacted Sobel operator). The horizontal and vertical 
filters are respectively 
 
 1 2 1 and 1   −1    . 
 −1 −2 −1  2   −2 
   1   −1 

This modification is required, because the original Sobel 
operator does not consider 1-pixel differences in the 
image. 

4. Compression of visually significant regions 

The white regions contain visually significant 
information and thus it is desirable that any compression 
method applied to the pixels belonging there does not 
cause unwanted loss of detail. As discussed in section 3, 
the white regions are selected based on the value of the 
gradient (i.e. the gradient has a large value). This implies 
that there are big differences in the values of the 
neighboring pixels. The human sight loses precision with 
the increase of stimulus. In other words, the eye cannot 
tell between small variations of large differences – the 
same way people can tell there is a big difference 
between $1 and $2, but tend to disregard the difference 
between $200,010 and $200,020. 

Experiments showed that the two least significant bits of 
pixels in the white regions for both the brightness and the 
chrominance bands do not play a role for the visual 
discrimination between the original and the compressed 
image. Thus for all pixels in the white regions the two 
least significant bits are discarded. 

As suggested in [2], the coding of each bitplane 
separately could offer a better level of compression. A 
bitplane consists of the bits of all pixels in the image at a 
certain level of significance – for example, all most 
significant bits. To achieve a better compressability, the 
pixel values are coded first using the so-called gray code. 
The code is calculated using: 

gm = bm 
gi = bi ⊗ bi+1 for 0<i<m 

where m is the number of bits used to represent the 
number, bi are the original bits, gi are the bits of the gray 
code representation, and ⊗ is the XOR operation. 

The gray code is a reversible function, which produces 
binary representation of numbers in a way such that for 
numbers, whose difference is one, there is only one 
different bit in their binary representations. This can be 
illustrated by considering 7 and 8. The binary 
representation of 7 is 0111. The binary representation of 
8 is 1000. Even though the numbers are very close (their 
difference is 1), their standard binary representation 
differs along all bits. However, the gray codes 
corresponding to 7 and 8 are: 0100 and 1100. The 
difference is in a single bit only. 

By gray-coding the pixel values before compression 
results in a greater chance that neighboring pixels in the 
image will have same bits in a given bitplane. 
Compressing large regions with same values results in a 
much better compression ratio. 
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Summarizing, the following method for compression of 
the white regions is used: gray-code the pixel values and 
then output the 6 most significant bitplanes separately. 

This method, however, poses a limitation to the threshold 
value which is used to select the visually significant 
regions. If the value is set too low, regions with a smaller 
gradient will be compressed and the two least significant 
bits discarded. This can result in significant degradation 
of the image, since the bit discarding is acceptable only 
when the gradient is sufficiently high. A threshold value 
of less than 0.05 is not recommended. 

5. Compression of the visually less significant 
regions 

The compression of the black regions is a more 
sophisticated process than the compression of white 
regions, since there is greater freedom in discarding 
visually insignificant information. As discussed in 
section 3, the gradient in the black regions is very small 
and the human eye perceives only smooth changes in 
such regions. A method which can be successfully used 
in these circumstances is the prediction-based coding. 

The prediction-based coding works as follows: after each 
pixel is coded, a predictor is queried about the value of 
the next pixel. The predictor provides a prediction, which 
is then compared with the actual value of the pixel. The 
comparison provides the prediction error, which is then 
used for compression. After the pixel is processed, the 
predictor is updated with the actual value of the pixel and 
the compression proceeds with the next iteration. 
Depending on how successful the predictor is, the 
prediction errors can be very small and thus much fewer 
bits could be used to code each pixel. The black regions 
have a small gradient and thus the prediction-based 
coding is very suitable – pixel values can be predicted 
accurately from their neighborhoods. In order to increase 
the chance of successful prediction, additionally the 
black regions can be blurred before the start of 
compression. This is acceptable, since the observers 
already perceive the regions as blurred. Experiments 
showed, however, that heavy blurring becomes 
noticeable. Thus the following filter was selected for 
convolution with the image (band): 
 
 1 1 1 
 1 9 1 × (1/17) 
 1 1 1 
 
Since the black regions can have arbitrary shape, the 
definitions of neighborhoods had to be changed 
accordingly. A same-region neighborhood consists of all 
pixels from the standard neighborhood, which lie in a 
black region. Both the convolution and the prediction use 
this modified notion of neighborhoods. 

After blurring the black regions, the prediction-based 
coding becomes even more efficient. The expected 
prediction error is small, however, in certain cases it can 
be quite big. If a fixed number of bits is reserved for the 
coding of the prediction errors, then is has to be 
sufficiently large to describe the greatest possible error 
(unless we accept that the prediction errors can be 
recorded inaccurately). Having a large number of bits for 
the prediction error, however, degrades the performance 
of the compression, since one expects that the predictor 
will be successful most of the time. Thus a variable 
length binary coding for the prediction error was 
selected. 

Experiments showed that the Y band can be compressed 
much more efficiently than the Cb and Cr bands. It was 
discovered that even a single-bit inaccuracy in the 
description of the chrominance bands leads to a 
perceptible “coloring” of the image in the black regions. 
Unlike the white regions, where inaccuracy is 
compensated for by the high gradient, the black regions 
have smooth areas and the eye is capable to detect the 
overall change of color easily. On the other hand, the 
overall change of brightness is not detected so easily. 
These results are also supported by the thresholding 
functions described in section 2. The above facts led to 
the selection of two different coding methods, depending 
on whether the brightness band or the chrominance bands 
are coded. 

For the coding of the Y band, the prediction error is 
quantized (with a step of 2) before writing to the output. 
This does not result in perceivable degradation of the 
image. Due to the quantization, the values written out are 
expected to be small and the variable length binary 
coding used is designed to favor small values (see the 
table below). 

Code for Y band Code for Cb and Cr bands 
Range of 
number 

Bit representation Range of 
number 

Bit representation 

0 
 

[−2;2] 
 
 
 
 
 
 

else 

0 
 
10xy 
if positive, x=1 
else x=0, 
y = bit 
representation of 
(abs(value) −1) 
 
11xy...y 
if positive, x=1 
else x=0 
y...y = bit 
representation of 
abs(value) 
 # of bits 
governed by the 
maximal 
prediction error 
possible 

0 
1 

−1 
 

[−5;5] 
 
 
 
 
 
 

else 

00 
11 
01 
 
100xyy 
if positive, x=1 
else x=0, 
yy = bit 
representation of 
(abs(value) −2) 
 
101xy...y 
if positive, x=1 
else x=0 
y...y = bit 
representation of 
abs(value) 
 # of bit governed 
by the maximal 
prediction error 
possible 
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For the coding of the Cb and Cr bands, the prediction 
error is not quantized and a different coding scheme is 
used. The variable length binary coding is adjusted to 
larger expected prediction error (see the table on the 
previous page). 

Unlike with the standard prediction-based coding, where 
the image is scanned pixel after pixel, in this case the 
coded regions have arbitrary shape. Thus a method 
suitable for the traversal of an arbitrary region is 
required. In [3] such a method is described. Before a 
pixel is processed, all of its same-region neighbors which 
have not been processed so far are pushed into a FIFO 
structure. After the pixel is processed, the next pixel is 
retrieved from the FIFO structure. In this simple manner, 
regions of arbitrary shape can be traversed. Experiments 
were done with 4-neighborhoods and 8-neighborhoods. 
The experiments were not very extensive, however, it 
appears that 4-neighborhoods offer a slightly better 
compression ratios in the general case. 

Two types of predictors have been used: a sliding 
window predictor (used in standard prediction-based 
coding), and a neighborhood predictor. The sliding 
window predictor uses the average of the last 10 values 
to predict the new value. The neighborhood predictor 
uses the average of the already processed same-region 
neighbors for the same purpose. As expected, the 
neighborhood predictor is much more accurate. Used on 
a single photographic image, the sliding window had a 
standard deviation of 5.83 for the Y band and 6.42 for the 
Cb band, while the neighborhood predictor had a 
standard deviation of 3.85 for the Y band and 2.61 for the 
Cb band. This resulted in choosing the neighborhood 
predictor. For each black region, the predictor is 
initialized with the first byte of the region. This byte is 
stored in the output stream directly. 

Summarizing, the following method for compression of 
the black regions is used: for each black region initialize 
the neighborhood predictor with the first pixel in the 
region, then traverse the region and output the prediction 
errors for the pixels. If the Y band is compressed, the 
prediction errors are quantized. The prediction errors are 
coded with a variable length binary code, which is 
different for the brightness band and the chrominance 
bands. 

This method, however, poses a limitation to the threshold 
value which is used to select the visually significant 
regions. If the value is set too high, regions with a large 
gradient will be blurred and this will result in image 
degradation. Furthermore, a greater number of bits will 
have to be reserved for the prediction error and this will 
decrease the compression ratio. A threshold value greater 
than 0.15 is not recommended. 

6. Results 

The results achieved with the reference implementation 
are not completely disappointing, even though they do 
not match the results in [1]. For the test images, a 
compression of at least 50% over the uncompressed 
images was achieved. Please refer to the given table for 
details. In all cases, however, there was no visible image 
degradation. This has less significance in photographic 
images, where JPEG-style compressors have outstanding 
performances (high compression with little visible image 
degradation). However, the proposed region-based 
method is applicable also to images of vector clipart, 
diagrams, text, etc. where the JPEG compression is 
known to introduce unwanted artifacts. Since it is based 
on the human vision model, it is completely versatile. 

A table with the results of compression, as well as the 
test images are given below. The images have reduced in 
size. 

 

 Dcp.jpg 

 Grad.tif 

 Infra.tif 
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 Kingston.jpg   Ppts.tif   test.tif 

 

Waldo1.bmp    Waldo2.tif 
          (Waldo1.bmp reduced in half) 

 

Name of image Uncompressed size TIFF compressed 
(lossless) 

JPEG compressed 
(highest quality) 

Region-based 
compressed 

Dcp.jpg 5.88 MB 6.53 MB 1.89 MB 2.74 MB 

Grad.tif 301 KB 126 KB 30.2 KB 13 KB 

Infra.tif 362 KB 35.4 KB 41.3 KB 17.9 KB 

Kingston.jpg 524 KB 548 KB 139 KB 209 KB 

Pptsm.tif 647 KB 60.6 KB 143 KB 62.8 KB 

Test.tif 11.3 KB 1.5 KB 1.45 KB 0.86 KB 

Waldo1.bmp 6.32 MB 6.99 MB 2.25 MB 3.15 MB 

Waldo2.tif 1.58 MB 1.83 MB 674 KB 927 KB 
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The method performed poorly with well-compressable 
images, since in addition to the compressed data it has to 
store the region bitmaps for the three bands. As expected, 
the JPEG compression proved to be more desirable for 
high-frequency images (photographic images), where the 
slight degradation is visually acceptable. 

 
a 

 
b 

Figure 5 Comparison of quality. a) image compressed 
with JPEG (an artefact line can be seen above the dark 
region); b) same image compressed with the region-
based method (degradation is not visible). 

 

a    b 

Figure 6 Comparison of quality. a) image compressed 
with JPEG (arrow has blurred edges); same image 
compressed with region-based method (edges remain 
sharp). 

 

a  b  c  

Figure 7 Comparison of quality. a) image compressed 
with JPEG (hat and stripes are blurred, change of color); 
b) original image; c) same image compressed with 
region-based method (degradation not visible). 

 

The implementation used for the testing of the method 
consists of a number of separate modules, some written 
in Java and others in Matlab. Thus it is virtually 
impossible to predict what is the time complexity of the 
implementation relative to other methods for 
compression. The JPEG compression processes an image 

in a single pass, while the proposed method has to make 
a number of passes. On the other hand, most of the 
calculations involve very simple operations. The space 
complexity of the method also exceeds that of JPEG, 
since the bitmap of the regions is required in addition to 
the image data. Thus the timings provided below are 
stated simply for the purpose of relative comparison 
between executions of the reference implementation. The 
results were obtained using a VIA C3 766MHz 
processor, 128MB SDRAM machine with Microsoft 
Widows XP. 

Name of 
image 

Compression 
(in sec.) 

Decompression 
(in sec.) 

Size 
(in pixels) 

Dcp.jpg 887 462 1760×1168 
Grad.tif 82 45 400×250 
Infra.tif 80 49 451×274 

Kingston.jpg 98 54 474×377 
Pptsm.tif 155 85 564×391 

Test.tif 17 16 28×50 
Waldo1.bmp 1503 455 1265×1745 

Waldo2.tif 243 121 633×873 
 

Note: the compressed images appear to be slightly more 
greenish than the originals. This is due to the imperfect 
RGB→YCbCr→RGB conversion. The compression 
method uses the intermediary files with the Y, Cb, and Cr 
bands (please see Appendix A). Thus for correctness, the 
output should be compared with these images and not 
with the RGB original. The implementation uses the 
built-in JAI colorspace converter. A better YCbCr 
separation should be used to achieve better results. 

7. Conclusion 

The proposed method for region-based visually lossless 
compression combines results from different fields of 
research to offer a way to compress digital images 
without any loss of visually significant information. The 
user would not be able to tell a difference between the 
original and the reconstructed images when they are 
displayed on the screen. The properties of the Human 
Vision Model are employed to take advantage of 
different ways to reduce the visually insignificant data in 
the compressed image. The YCbCr color model is used, 
both because of its suitability for compression and 
because of its resemblance of how people see. Each band 
is divided into regions with visually significant data and 
with visually less significant data. The regions are coded 
using the most appropriate coding method to achieve 
high compression performance. The size of the 
compressed images is reduced at least by half. The 
method is applicable to all types of images, since it takes 
into account the properties of the human sight rather than 
mathematical definitions of closeness. 
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This work serves only as an introduction of this method 
and many possible improvements are not considered. The 
proposed modification of the Fourier transform does not 
yield useful results, so another method has to be applied. 
The additional employment of mathematical 
approximation models might also improve the 
performance. Yet higher compression ratio can be 
achieved by the use of noise modeling as discussed in 
[1]. Improvements on all parts of the algorithm are also 
possible – resulting in higher speed and/or better 
compression. 

References 

1. Nadenau M., Integration of human color vision 
models into high quality image compression, 
Thesis #2296, Federal Technical University of 
Lausanne, 2000 

2. Gonzalez R., Woods R., Digital image 
processing, 2nd ed, Prentice Hall, 2002 

3. Fernandez i Ubiergo G., Lossless region-based 
multispectral image compression, Image 
Processing and Its Applications Conference, 
Dublin, Ireland, 1997, vol. 1, pp. 64-68 

4. Coren S., Ward L., Enns J., Sensation and 
Perception, 5th ed, Harcourt Brace College 
Publishers, 1999 

5. Padgham C., Saunders, J., The Perception of 
Light and Color, Academic Press Inc., New 
York, 1975 

6. Chang S., Messerschmitt D., Transform Coding 
of Arbitrarily-Shaped Image Segments, In 
proceedings of first ACM international 
conference on Multimedia, Anaheim, 
California, 1993, ACM Press, pp. 83-90 

7. YCbCr Color Model, ITU-R BT.601 
Recommendation, International 
Telecommunication Union, 
http://www.itu.int 



 12 

Appendix A 

Manual for the reference implementation 

The method is implemented using two development environments: Java and Matlab. The following additions to the standard 
distributions are needed: for Java – JAI and the JAI ICC profiles; for Matlab – IPT. Please note that a beta version of JAI 
was used, so the function with newer versions is not guaranteed.  The required ICC color profiles are included with the 
distribution of my implementation. 

Generation of the perception test pictures 

All test images, as well as the code needed to generate them in included in the “perception” subfolder. The raw data from 
the measurements is available in the Excel file there. 

Compression 

1. Input – RGB images ONLY 
2. Name of input file: “filename.tif” (TIFF/JPEG/BMP accepted) “filename” is without extension! 
3. Separation to YCC 

a. java YCCSeparator filename.tif filename 
b. output – filenameY.tif, filenameCb.tif, filenameCr.tif (grayscale of each band) 

4. Selection of regions 
a. In Matlab, run “regions(‘filename’)” 
b. Output – filenameYR.tif, filenameCbR.tif, filenameCrR.tif (bitmaps with regions) 

5. Compression 
a. java RegionCodec –c 0.1 filename 
b. intermediary outputs – filename.cod, filenamei.cod (data, initial pixels for predictor) 
c. output – filename.rbc (GZIP compressed region bitmaps and the intermediary files) 

6. Output of YCC separation can be removed. 

Decompression 

1. Input – “filename.rcb” image obtained from compression, “filename” is without extension! 
2. Decompression 

a. java RegionCodec –d 0.1 filename 
b. intermediary files – filename.cod, filenamei.cod, filenameYR.tif, filenameCbR.tif, filenameCrR.tif (data, 

initial pixels for predictor, bitmaps with regions) 
c. output – filename_Y.tif, filename_Cb.tif, filename_Cr.tif (grayscale of YCC bands) 

3. Merging of bands 
a. java YCCSeparator –m filename_ (underscore is required) 
b. output – filename_.tif (reconstructed RGB image) 

4. Output of decompression can be removed. 

The above procedures are automated by the “compress” and “decompress” functions for Matlab (can be used only under 
MS Windows). Invoke with “compress(‘filename.tif’)” (or .jpg/.bmp) and “decompress(‘filename’)” 
(without extension). These functions also provide timing. Both functions accept the threshold value as a second parameter, 
but it is optional. If it is used, the decompression has to be invoked with the same value which was used for the 
compression. 

Further documentation can be found in the source files. 


