
Techniques for the Parametrization of
Discrete-Event System Templates ⋆

Lenko Grigorov Karen Rudie∗

∗ lenko.grigorov@banica.org

Department of Electrical and Computer Engineering,
Queen’s University, Kingston, Ontario

Abstract: Two techniques for the parametrization of templates in the template design
methodology are introduced. First, the use of finite-state automata extended with variables
is demonstrated. This kind of parametrization allows one to vary the occurrences of events
by varying a parameter. Second, a new way of parametrizing templates is proposed, named
compositional parametrization. With this technique, a template consists of the composition of
a number of structurally identical components whose events are indexed differently, depending
on a parameter. This kind of parametrization allows one to vary the structure and event set
of the template by varying a parameter. An enhancement of compositional parametrization
with the use of special selector transitions is also discussed. This extension allows one to
model interactions between components which depend on the total number of components in a
composition and thus cannot be modelled by simple parametrization of event indices. With the
choice of a specific parameter, regular finite-state automaton models are obtainable from the
templates parametrized with any of the aforementioned techniques. Thus, such parametrized
templates can be easily introduced in the template design modelling environment and they
integrate seamlessly with the supervisory control framework. Motivating examples to illustrate
the application of template parametrization are provided.

Keywords: discrete-event systems, parametrization, template design, finite automata,
supervisory control.

1. INTRODUCTION

The application of discrete-event supervisory control, as
proposed in Ramadge and Wonham (1987), has not been
very widespread since the introduction of the methodology.
A number of reasons have contributed to this lack of
uptake. One of them is the large amount of computation
required to synthesize controllers for non-trivial systems.
Researchers have recognized this drawback and much
effort has focused on mitigating the computational size of
the supervisory control problem, e.g., by considering local
modular control, de Queiroz and Cury (2000), or by using
hierarchical structures and symbolic representations, Ma
and Wonham (2003). Our research started with an attempt
to understand the process of applying supervisory control
theory from the human factors point of view, Grigorov
(2009). Based on this investigation, we proposed a new
methodology for the design of discrete-event system (DES)
controllers by using templates, Grigorov et al. (2008,
2010).

The usability of the template design methodology was
evaluated and it was found that the novel approach of-
fers advantages over the classical in DES problem solv-
ing. However, it was noted that a further advantage
may be gained if a foundation for the parametrization
of templates is developed. In this paper, we propose and
demonstrate two methods of template parametrization.

⋆ This work was supported by NSERC, Canada.

The first one is based on using Extended Finite Automata
(EFA), Sköldstam et al. (2007), as the underlying tem-
plate models. The second method introduces composi-
tional parametrization, where templates are instantiated
by composing structurally equivalent components whose
events have parametrized indices. Additionally, we de-
scribe an extension of the compositional parametrization
where special selector transitions are used. This enhances
the expressiveness of the model. For each method, we give
examples of basic templates and then demonstrate how
they can be parametrized. As with our original template
design approach, the use of parametrized templates does
not require modifications to the established theoretical
framework of supervisory control. Parametrization occurs
at the level of the user interaction with the modelling
environment.

2. PRELIMINARIES

The template design methodology is based on the con-
struction of a conceptual design by using pre-built com-
ponents, called templates. Templates have already been
proposed in the context of DESs, e.g., in Ekberg and Krogh
(2006) and Holloway et al. (2000). However, the main
inspiration for our work came from the work of Santos
et al. (2001) as it allowed us to position the template
design approach completely within the supervisory control
framework.

2.1 Template Design Framework

The template design approach is described in more detail
and illustrated with a small example in Grigorov et al.
(2008). Here, we will only review briefly the mathematical
background.

A template design consists of a set of modules (subsys-
tems), a set of channels (specifications), and links between
the modules and channels. Modules and channels as we
use them here are similar to the subplants and local
specifications in de Queiroz and Cury (2000). Finite-state
automata are used for the models, but the framework does
not preclude the use of other formalisms if the required
operations are available for them. Let I and J be index
sets such that |I|, |J | ∈ N and I∩J = ∅. The set of modules
is

M = {Gi = (Σi, Qi, δi, q0i, Qmi) | i ∈ I}

and the set of channels is

N = {Gj = (Σj , Qj , δj , q0j , Qmj) | j ∈ J}.

Furthermore, all modules have to be asynchronous. This
requirement permits the construction of a consistent
graphical representation as in the software from Grigorov
et al. (2010). All channels have to be asynchronous as well
because they describe generic specifications.

In order to relate modules and channels, and determine
what specifications should be enforced on the different
subsystems, one would link the appropriate events. Let
ΣM =

⋃
Gi∈M Σi be the set of all events in the modules

and ΣN =
⋃

Gj∈N Σj be the set of all events in the

channels. Then, the links in the system model will be given
by the function

C : ΣN → ΣM .

In other words, the function defines links between events of
channels and events of modules. The interpretation of the
link C(τ) = σ is that the event τ in the given channel
should be considered equivalent to the event σ of the
given module—thus relating the generic specification to
the given system. Synchronization between the modules
and channels is established, in effect defining the protocols
for the transfer of information between parts of the system.
Note that many channel events can be linked to the same
module event; and thus the operation of a module can be
governed by a number of channels (specifications). On the
other hand, each channel event can be linked only to one
module event, imposing restrictions on the occurrences of
this event. Similarly, for all Gj ∈ N , the restrictions of the
function, C|Gj

: Σj → ΣM , have to be injective to ensure
the consistency of the model.

After a system is modeled in the proposed framework,
modular control can be applied to obtain supervisors for
the separate specifications. This is possible since, under
the right interpretation, the model is equivalent to that
of a regular modular system. The first step is to use the
links to synchronize the channels in the template design.
Let G = (Σ, Q, δ, q0, Qm) ∈ N be a channel. Then define
G′ = (Σ′, QE , δ′, q0, Qm) as the synchronized channel G
where all channel events have been replaced with their
corresponding module events, i.e.,

Σ′ = {σ | ∃τ ∈ Σ, C(τ) = σ},

δ′(q, σ) = δ(q, C−1|G(σ)).

After channels are synchronized, either modular or mono-
lithic supervisor synthesis techniques can be used to obtain
the control solution.

In the proposed framework, a template is simply a model
of some common discrete-event behavior, e.g., the model
of a robot type which is used in many places on the factory
floor. In the supervisory control setting, the model would
be a finite-state automaton (FSA). Using a template, one
need not manually create a separate FSA each time this
behavior is needed. Instead, the software can make a copy
of the template, or instantiate the template.

Let G = (Σ, Q, δ, q0, Qm) be a template. The instance with
index p is defined as Ins(G, p) = (Σp, Q, δp, q0, Qm), where
the events of G are indexed with p, i.e., Σp = {σp | σ ∈ Σ}
and δp is the corresponding update of δ. Thus, for example,
creating the DES modules for ten workstations would be
reduced to instantiating the corresponding template with
ten different indices.

Since templates can describe both system behavior (i.e.,
modules) and restrictions on behavior (i.e., channels), the
use of templates is very natural. Suppose there is a library
of templates Lib = {Gk | k ∈ K}, where K is an index set
such that |K| ∈ N,K ∩ I = ∅ = K ∩ J . Then, some of the
modules, M , participating in a design can be created by
instantiating the required templates. In other words, for
some subset of modules Gi indexed by the subset I ′ ⊆ I,
∀i ∈ I ′,∃Gk ∈ Lib : Gi = Ins(Gk, i). Since the events
of every template instance are named in a unique way,
all instantiated modules will be asynchronous as required.
Similarly, some of the channels, N , can be created by
instantiating templates.

3. TEMPLATE PARAMETRIZATION

The parametrization of templates is a natural extension of
the template design framework. For example, if one would
like to create templates for buffers, a separate template
has to be constructed for all buffer capacities that need
to be considered (e.g., a buffer with two slots, a buffer
with three slots, etc.) However, it can be easily seen that
the basic workings of a buffer are the same regardless of
capacity. It would be much more convenient if there were
a single “buffer” template which could be parametrized in
terms of capacity—and then at instantiation one would be
able to choose the specific capacity to be used.

One of the first papers discussing the use of parametrized
finite-state automata to model DESs is by Chen and Lin
(2000). The authors propose a model where an automaton
is augmented with parameters from some vector space,
v ∈ V , which usually ranges over the set of natural
numbers. Then, transitions in the FSA can be conditioned
on the value of the parameters and, upon occurrence,
may update the value of the parameters. The conditions
are called guards and represent predicates on v. The
occurrences of transitions may update the parameters
using some functions f(v). For example, a transition on
the event “insert” in a buffer may be conditioned on a
counter variable not having reached a limit, and may

increase the value of the counter by one. The control
of such DESs may take advantage of the parameters in
addition to the information in the states of the FSA, as
proposed by de Oliveira et al. (2004). Control decisions are
based on predicates about the current state of the system
and on the current value of the parameters. The authors
propose a method to compute the supremal controllable
sublanguage of a system by incrementally backtracking
with the predicates until the control decisions do not
attempt control of uncontrollable events.

Unfortunately, the use of this parametrization approach
may result in non-regular behaviors and specifications—
and thus it cannot be readily applied in the template
design framework. A potential solution would be to restrict
the type of data collections that can be used. In Sköldstam
et al. (2007), the authors propose an algorithm for convert-
ing parametrized models, called Extended Finite Automata
(EFA), where each scalar in the data collection is restricted
to belong to a closed integer interval, into regular FSAs.

A different approach to parametrization is discussed by
Bherer et al. (2009). The authors discuss control of
parametrized DESs under three similarity assumptions,
namely, the process, mask, and specification similarity
assumptions. The first two assumptions constrain the type
of DESs considered to be from a class where processes can
be described as the composition of a replicated structure.
The specification similarity assumption constrains the con-
trol specifications to be symmetric, i.e., to pose the same
requirements on any subset (of a given size) of the process
components. It is proved then that, under these similarity
assumptions, it is possible to construct a supervisor for
a given specification for a system of arbitrary size (i.e.,
consisting of the composition of an arbitrary number of
replicas), n, based on the system of fixed size (i.e., consist-
ing of the composition of a fixed number of replicas), n0,
where n0 ≤ n and it is understood that usually n0 is much
smaller than n. Two of the limitations of this work are that
only state-based safety specifications are considered, and
that processes can consist of the composition of only one
replicated structure. Nevertheless, under the right condi-
tions, the proposed approach enables the efficient synthesis
of compact and scalable supervisors.

The parametrization of templates can naturally take ad-
vantage of the research described above. Templates are
essentially FSAs of which copies are made during instanti-
ation. (Here let us point out again that the basic template
design framework does not preclude, theoretically, the
use of formalisms other than FSAs.) Thus, it is simple
to incorporate parametrization through the use of EFAs.
Indeed, in the following, we will give examples where such
parametrization is suitable to express the desired flexibility
in a template model. However, we will demonstrate that
not all desired parametrization can be accomplished in
this way. We then propose another method of template
parametrization which bears similarity to the parametriza-
tion with replicated structures from Bherer et al. (2009),
and provide illustrating examples.

3.1 Parametrization using variables

Parametrization of template models using variables is a
simple way to introduce greater flexibility in the templates

in ∧ n < k / n := n + 1, out ∧ n > 0 / n := n − 1

Fig. 1. The EFA representation of a buffer of size k. Here,
n is an integer variable from the interval [0, k], with
the initial value n = 0 and an accepting value n = 0.

0 1 2

out

in in

out

(a) k = 2

0 1 2 3

inin

out

in

out out

(b) k = 3

Fig. 2. The regular FSA models for a buffer, derived from
the EFA representation in Fig. 1.

event / n := min(n + 1, k)

Fig. 3. The EFA representation of the specification that
an event has to occur at least k times. Here, n is an
integer variable from the interval [0, k], with the initial
value n = 0 and an accepting value n = k.

that can be used in a template design. The specific
parametrization approach we use in the following two
examples is borrowed from the work of Sköldstam et al.
(2007). However, as discussed earlier, there are other
similar approaches which can be substituted if so desired.

Let us consider the template for a buffer. Without
parametrization, a separate template must be available for
each or all buffer capacities that need to be considered.
However, with the use of a single variable, the EFA in
Fig. 1 can serve as a generic buffer template where the
parameter k specifies the desired capacity of the buffer.
Indeed, when k = 2 or k = 3, for example, one can convert
the EFA into the ordinary FSAs shown in Fig. 2. The
conversion can be performed by using the algorithm from
Sköldstam et al. (2007).

Another template which can be easily parametrized is the
template which specifies that an event has to occur at least
k times (see Fig. 3).

3.2 Compositional parametrization

Parametrization of templates with variables is suitable
for situations when different sequences of events could be
desired, but where the sequences are constructed using the
same set of events. However, this is not always the case.
Here we will discuss two templates where new behavior is
achieved by extending a basic pattern with new events.

First, let us consider the template which will specify that k
different events have to happen in sequence. The templates
for k = 2 and k = 3 are shown in Fig. 4. As it can
be observed, the two templates are not related simply

1 2

event2

event1

(a) k = 2

1

2

3

event1

event3

event2

(b) k = 3

Fig. 4. Specifications that k events have to happen in
sequence.

event2

event1 event2

event3

event3

event1

Fig. 5. A set of components which can be composed
using synchronous product to obtain the model from
Fig. 4(b).

by some functional variation of the generated event se-
quences. Rather, the template for k = 3 incorporates one
extra event in comparison to the template for k = 2.
Thus, the parametrization should be in terms of events
rather than variables. The parametrization of the template
can be expressed much more conveniently as the parallel
composition of a number of similarly structured compo-
nents, as shown in Fig. 5. Let us formalize this different
kind of parametrization, which we will call compositional
parametrization. The basic proposition here is that we will
create a generic component automaton with parametrized
events, and then obtain a number of specific derived au-
tomata which we will compose. A similar idea is used in
Bherer et al. (2009), however, in the context of scalable
supervisor synthesis. Here we are only interested in the
parametrization of templates and thus we need not impose
all the restrictions necessary for ensuring feasibility of such
synthesis. Most importantly, the patterns of synchroniza-
tion between components of the composition can be much
more complex; it is possible to use a number of generic au-
tomata in the same composition, different subsets of events
can be shared by different subsets of components, and it
is possible to have parameter-dependent synchronization.

Before we define compositionally parametrized automata,
first we will establish a few preliminaries. Since we are
aiming to define FSAs with parametrized events, and since
the parameter k is a natural number, the set of potential
events in the model is unbounded. Let us construct this
event set by enumerating all potential events, Σ∞ =
{σn|n ∈ N}. Then, each event from the components will
be represented by some σi.

Compositionally parametrized FSAs consist of the compo-
sition of structurally similar component automata which
differ only in the indices of their events (as shown in
Fig. 5). In order to parametrize event indices, with the
parameter i ∈ N, let us consider a finite set of functions,
F , such that ∀f ∈ F, f : N → N. For example, σi+1

would equal the event σ3 when i = 2 and σ4 when i = 3.
Such parametrization allows us to define automata where

event[2i]

event[2i − 1]

Fig. 6. A prototype automaton with parametrized events.

event1

event2

(a) i = 1

event4

event3

(b) i = 2

Fig. 7. Components derived from the prototype in Fig. 6
for some values of the parameter i.

event1

event4

event2

event3

event4

event2

event3

event1

Fig. 8. The compositional unit based on the prototype in
Fig. 6 for 1 ≤ i ≤ 2.

the specific indices of the events depend on the parameter
i, and thus it is possible to construct an arbitrarily large
series of similar automata just by varying i. An FSA with
parametrized events can be seen in Fig. 6. 1 Let us call
the generic structure of the components in a composi-
tion a prototype and, given F , let us denote it Gp =
(ΣF , Q, δ, q0, Qm). Here, the alphabet is ΣF = {σf |f ∈ F}
and all other elements of the tuple are defined as usual.

In order to compute compositions of components, it is
necessary to derive from the prototype a component for
each relevant i. We denote the derived component Gp(i) =
(Σ(i), Q, δ(i), q0, Qm). Here, Σ(i) = {σf(i)|σf ∈ ΣF } is
the set of events constructed by computing the specific
event indices for the given i. Similarly, the transition
function δ(i) is derived from the prototype function δ
by using the specific event indices for i. In other words,
δ(i)(q, σf(i)) = q′ for some q, q′ ∈ Q and f ∈ F if and
only if δ(q, σf) = q′. The components derived from the
prototype in Fig. 6 for i = 1 and i = 2 are shown in Fig. 7.

We need to define one last construct before we give the
formal definition of compositional parametrization. Let us
choose the lower and upper bounds, lo and hi, respectively,
for the parameter i (where lo, hi ∈ N, lo ≤ hi). Then, we
call the composition ‖hi

i=loG
p(i) a compositional unit and

we denote it 〈Gp, lo, hi〉. The compositional unit of the
prototype in Fig. 6 for lo = 1, hi = 2 is shown in Fig. 8.

We define the compositional parametrization of automata
as follows: an FSA G[k] is said to be compositionally
parametrized if it can be expressed as

G[k] = A‖〈Gp
1, lo1(k), hi1(k)〉‖ . . . ‖〈Gp

l , lol(k), hil(k)〉,

1 In the figures, square brackets are used instead of subscripts for
readability.

event[i + 1]

event[i]

(a) Prototype G
p

1
.

event[i]

event[1]

(b) Prototype G
p

2
.

Fig. 9. The prototype automata which can be used for the
compositional parametrization of the template which
specifies that a number of events have to occur in a
sequence.

¬start[i]∧¬finish[i]

finish[i]

start[i]

Fig. 10. The prototype for the components of a composi-
tional parametrization of mutual exclusion.

where A is some FSA, l ∈ N, G
p
1, . . . , G

p
l are some

prototype FSAs, and for j ∈ [1, l] : loj : N → N, hij : N →
N are parametrized boundaries such that ∀k : loj(k) ≤
hij(k). In other words, a compositionally parametrized
FSA can be expressed as the composition of a conventional
automaton and a number of compositional units.

Now, let us return to templates from Fig. 4. A template,
T , with compositional parametrization can be constructed
as follows: T [k] = 〈Gp

1, 1, k − 1〉‖〈Gp
2, k, k〉, where the

prototypes G
p
1 and G

p
2 are shown in Figs. 9(a) and 9(b),

respectively. Then, T [2] and T [3] will be the same as the
corresponding automata shown in Fig. 4. Furthermore,
using this parametrized template, it will be possible to
obtain the desired regular FSAs for an arbitrary value
k > 1 (the model is undefined when k = 1).

3.3 Compositional parametrization with selector transitions

In the previous section, we introduced compositional
parametrization and we demonstrated how it can be
used to parametrize a template. However, compositional
parametrization as it stands is not powerful enough to ex-
press models where the composition of individual compo-
nents depends on the synchronization of non-local events
(by local events, we mean events expressible as σf). Some-
times, synchronization has to occur across a subset of
all events where the size of the subset depends on the
parameter k. For example, in a parametrized template for
mutual exclusion, the number of events that need to be
excluded in each component will depend on the overall set
of components in the composition. A sketch of the desired
solution is shown in Fig. 10.

Here, we propose an extension of compositional parametriza-
tion which allows one to define parametrized transitions
which depend on the final size of the composition, k. First,
let us consider a set, H, of indicator functions selecting
a subset of N depending on a parameter i ∈ N, i.e.,
∀h ∈ H, h : N × N → {0, 1}. For a given h ∈ H and some
parameter i ∈ N, let us also denote the subset selected
by the function hN (i) = {n ∈ N|h(i, n) = 1}. We call
a transition labelled with σh for some h ∈ H a selector
transition. The label σh does not directly introduce new
events into a model, rather it serves to select a subset

of already existing events. For example, the transition on
σi6=2 will select the events Σ∞ \ {σ2}, intersected with
the set of events actually used in the composition. In
this sense, the set of selected events may vary with the
number of components in a composition. The definition of
a prototype is updated to be Gp = (ΣFH , Q, δ, q0, Qm),
where ΣFH = {σf |f ∈ F} ∪ {σh|h ∈ H}.

When selector transitions are used, it is no longer pos-
sible to derive a component from the prototype based
only on the parameter i. The exact semantics of selector
transitions (i.e., which events are selected) depend also on
which specific components participate in the composition.
Thus, when deriving components from a prototype, it is
necessary to choose the range of i a priori. Let lo, hi ∈
N, lo ≤ hi are some chosen bounds for i, lo ≤ i ≤ hi.
Let R(F, lo, hi) = {d|∃f ∈ F,∃i, lo ≤ i ≤ hi, f(i) = d},
i.e., it signifies the union of the ranges of the functions
in F over the interval [lo, hi]. In other words, R(F, lo, hi)
contains the indices of all events σf that will appear in
the composition for lo ≤ i ≤ hi. Then, we denote the
derived component hi

lo Gp(i) = (hi
lo Σ(i), Q, hi

lo δ(i), q0, Qm).
Here, hi

lo Σ(i) is the set of events constructed as follows.

• All regular parametrized events belong to the event
set, Σ(i) ⊆ hi

lo Σ(i).
• All events in the composition which are selected by

a selector transition belong to the event set, {σd|h ∈
H, d ∈ hN (i) ∩ R(F, lo, hi)} ⊆ hi

lo Σ(i).
• No other events belong to hi

lo Σ(i).

The transition function hi
lo δ(i) is defined as follows.

• The transition function is identical to δ(i) for all
regular parametrized events. If δ(q, σf) = q′ for some
q, q′ ∈ Q and f ∈ F , then hi

lo δ(i)(q, σf(i)) = q′.
• Selector transitions are replaced with individual tran-

sitions for all the selected events. If δ(q, σh) = q′

for some q, q′ ∈ Q and h ∈ H, then ∀d ∈ hN (i) ∩
R(F, lo, hi), hi

lo δ(i)(q, σd) = q′.
• No other transitions exist in the derived component,

i.e., in all other cases, hi
lo δ(i) is undefined.

Finally, we need to update the definition of compositional

units. The compositional unit 〈Gp, lo, hi〉
def
= ‖hi

i=lo
hi
lo Gp(i).

The definition of compositional parametrization takes ad-
vantage of this update automatically.

As indicated previously, the prototype component for a
mutual exclusion template will have to use selector tran-
sitions in order to exclude the occurrences of other events,
regardless of how many they are. If we call the model from
Fig. 10 Gp, then we can use compositional parametrization
to define the parametrized mutual exclusion template as
follows: MUTEX[k] = 〈Gp, 1, k〉. Note that the event la-
bels in the automaton on Fig. 10 do not follow the expected
format only for the purpose of convenience. As already
explained, the variation of event symbols can be mapped
to events in Σ∞. Furthermore, once such a mapping is
defined, the selector transition in Fig. 10 can be rewritten
to conform to the format used in the definition of selector
transitions. The regular FSAs which can be obtained from
MUTEX[k] for k = 2 and k = 3 are shown in Fig. 11.

Finally, let us point out that, under certain conditions,
selector transitions can be expressed as the event masks

start2finish1

finish2start1

(a) k = 2

start1

finish1 start2

finish2

finish3 start3

(b) k = 3

Fig. 11. The FSAs obtained from the parametrized mutual
exclusion template MUTEX[k] for some values of the
parameter k.

introduced in Kumar and Heymann (2000). However,
it might be necessary to define separate event masks
for every pair of interacting components (compositional
units), of which there can be an arbitrary number—in
essence necessitating the use of parametrization for masks.

4. CONCLUSIONS

In this paper we introduced two techniques for the
parametrization of templates to be used with the tem-
plate design methodology. The first technique makes use
of FSAs extended with variables, e.g., as per Sköldstam
et al. (2007). The second technique consists of varying
the number of components in the composition which con-
stitutes the template model, somewhat similar to the
approach of Bherer et al. (2009). We also discussed an
extension of the compositional parametrization by using
special selector transitions which allow the modelling of
interactions between components depending on the total
number of components in a composition. All parametriza-
tion techniques and extensions result, with the choice
of a specific parameter, in the synthesis of regular FSA
models. Thus, such parametrized templates can be easily
introduced in the template design modelling environment,
Grigorov et al. (2010), and they integrate seamlessly with
the supervisory control framework.

In our opinion, the most important next step to be taken is
to implement the proposed parametrization techniques in
the template design software from Grigorov et al. (2010).
This will make parametrized templates available to users,
and allow us to evaluate the usefulness and usability of
the techniques. We also envision the development of in-use
parametrization approaches, where instantiated templates
will be parametrized automatically depending on how they
are used. For example, an instance of a “mutual exclusion”
template could vary its behavior dynamically depending
on how many entities are connected to it. Finally, we
believe that further investigation of the relation between
compositional parametrization of templates and controller
synthesis for parametrized DESs, Bherer et al. (2009), may
lead to interesting results. Namely, it may be possible
to use the scalable controller synthesis method within a
template design when all prerequisites are met.

ACKNOWLEDGMENT

We would like to thank José Cury from the Department
of Automation and Systems, Federal University of Santa

Catarina, Brazil for the lively discussions which stimulated
our research on template parametrization.

REFERENCES

Bherer, H., Desharnais, J., and St-Denis, R. (2009). Con-
trol of parameterized discrete event systems. Dis-
crete Event Dynamic Systems: Theory and Applications,
19(2), 213–265.

Chen, Y.L. and Lin, F. (2000). Modeling of discrete event
systems using finite state machines with parameters. In
Proceedings of the 2000 IEEE International Conference
on Control Applications, 941–946. Anchorage, Alaska,
USA.

de Oliveira, C., Cury, J.E.R., and Kaestner, C.A.A. (2004).
Discrete event systems with guards. In Proceedings
of the 11th IFAC Symposium on Information Control
Problems in Manufacturing, volume 1, 90–95. Salvador,
Brazil.

de Queiroz, M.H. and Cury, J.E.R. (2000). Modular
control of composed systems. In Proceedings of the 2000
American Control Conference, volume 6, 4051–4055.

Ekberg, G. and Krogh, B.H. (2006). Programming discrete
control systems using state machine templates. In Pro-
ceedings of the 8th International Workshop on Discrete
Event Systems, 194–200. Ann Arbor, MI, USA.

Grigorov, L. (2009). Observations on solving discrete-event
control problems: patterns and strategies. Technical
report 2009-558, School of Computing, Queen’s Univer-
sity, Canada.

Grigorov, L., Butler, B.E., Cury, J.E.R., and Rudie, K.
(2010). Conceptual design of discrete-event systems
using templates. To appear in Journal of Discrete-Event
Dynamic Systems.

Grigorov, L., Cury, J.E.R., and Rudie, K. (2008). Design of
discrete-event systems using templates. In Proceedings
of the American Control Conference 2008, 499–504.
Seattle, WA, USA.

Holloway, L.E., Guan, X., Sundaravadivelu, R., and Ash-
ley, Jr., J. (2000). Automated synthesis and composi-
tion of taskblocks for control of manufacturing systems.
IEEE Transactions on Systems, Man, and Cybernetics:
Part B, 30(5), 696–712.

Kumar, R. and Heymann, M. (2000). Masked prioritized
synchronization for interaction and control of discrete
event systems. IEEE Transactions on Automatic Con-
trol, 45(11), 1970–1982.

Ma, C. and Wonham, W.M. (2003). Control of state
tree structures. In Proceedings of the 11th Mediter-
ranean Conference on Control and Automation. Rhodes,
Greece. Paper T4-005.

Ramadge, P.J. and Wonham, W.M. (1987). Supervisory
control of a class of discrete event processes. SIAM
Journal on Control and Optimization, 25(1), 206–230.

Santos, E.A.P., Negri, V.J.D., and Cury, J.E.R. (2001). A
computational model for supporting conceptual design
of automatic systems. In Proceedings of 13th Inter-
national Conference on Engineering Design, 517–524.
Glasgow, UK.

Sköldstam, M., Åkesson, K., and Fabian, M. (2007). Mod-
eling of discrete event systems using finite automata
with variables. In Proceedings of the 46th IEEE Confer-
ence on Decision and Control, 3387–3392. New Orleans,
LA, USA.

