
Problem Solving in Control of Discrete-Event Systems
LENKO GRIGOROV lenko.grigorov@banica.org

School of Computing, Queen’s University, Kingston, Ontario K7L 3N6,Canada

KAREN RUDIE karen.rudie@queensu.ca

Department of Electrical and Computer Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada

Abstract— Human performance in problem solving in the
context of supervisory control of discrete-event systems is
discussed. Software packages for such problems usually offer
only rudimentary support in the form of visual data entry and
algorithmic computations. Other activities such as system mod-
eling and verification of the solution have to be done without
computer support. This work is a first step in understanding
how humans approach discrete-event control problems. An
observational study is described, where subjects are video-taped
solving supervisory control problems. One video recording is
used to construct a taxonomy of the task and then the different
activities of the subject are encoded accordingly. The data are
analysed to discover patterns of human activity. These results
can be used to guide the design of software for computer-aided
problem solving in this context.

Keywords: Discrete-Event Systems, Supervisory Control, Hu-
man Problem Solving

I. I NTRODUCTION

The field of research investigating the control of discrete-
event systems (DESs) was established with the seminal work
of Ramadge and Wonham [1]. One of the main strengths
of their theory of Supervisory Control of DESs is that there
exists a polynomial-time algorithm which, given a set of hard
constraints, can compute automatically the most permissive
system supervisor. The first implementation of this algorithm
appeared in the software package TCT [2].

The user interface of this software package has been cri-
tiqued unfavorably [3], however, even the latest versions offer
no significant improvements. More recently, newer software
packages such as [4], [5], [6] have improved the experience
of the user by taking advantage of the graphical abilities
of the interface of the desktop computer. The visibility of
DES models is improved by displaying them as Finite-State
Machines (FSMs). As well, the user can interact with these
representations directly via the mouse cursor. For example,
in IDES, a “pen-and-paper” user interface paradigm is used.
The user can create consistent structures of both states and
transitions by clicking inside the model view without having
to switch between different “modes of operation”.

Despite all advances in user-friendliness, all reviewed
software for supervisory control of DESs suffers from two
main disadvantages:

1) The representation of very complex DES models is
not helpful for the user. Some DES models may have
a state space of a size greater than106. The visual
FSM representation of such models is meaningless to
the user; as is a simple list of states and transitions.
Humans have a limit on the amount of information they

can attend to at any moment in time [7]. It is practi-
cally impossible to discover significant relationships
between such enormous number of entities if each one
has to be examined separately.

2) The main functionality around which the software is
designed is the performance of the raw computations
of DES algorithms. Additional support is provided
only for the input of DES models. However, there are
other activities that take place in DES problem solving.
These include the following:

• creating a formal model of a real system
• the verification of the result of computations
• the implementation of the result of computations

Existing software does not offer support in these areas.

Researchers in Human-Computer Interaction (HCI) point
out [8], [9] that our understanding of the human factors
in computer use and in information visualization is very
rudimentary. There are no central theories which reliably
and robustly describe human thinking and performance when
dealing with a complex and interactive device such as a
computer. Thus, a simple solution to the problems mentioned
earlier is not possible.

The main goal of the research, a part of which this study
describes, is to create an approximate model of the cognitive
processes involved in DES problem solving. The collected
data, due to their inherent limitations, do not allow for a re-
liable statistical analysis. However, they may indicate trends
which can be useful in the design of a new user interface
for DES software. While standard evaluative methods for
software interfaces, such as user testing and interviews, may
reveal problems with a specific design choice, they are not
able to uncover the reasons that underlie the success or
failure of a design. This is why we believe that understanding
the cognitive process of problem solving is an important first
step to the design of effective interfaces. Such understanding
would allow the software to use predictions from the cog-
nitive model online—to make the work of DES researchers
more seamless and offer enhanced support throughout the
process of problem solving.

No literature discusses formally the topic of DES problem
solving as exhibited by human subjects. However, some
authors make anecdotal observations. In [3], the authors
discuss the usability issues of the TCT package as it pertains
to the activities carried out in DES problem solving. The
two main problems discovered are that certain commonly
used algorithms are not available and that the interface of

the program is not graphical. The authors recommend that
graphical images be used to represent states and transitions
which could, in turn, be labeled using alphanumerical sym-
bols. In our opinion, the authors’ claims that this would
make a DES system model truly understandable is not well
substantiated, especially when one considers the limitations
of human perception and the difficulties of designing good
visualizations of huge amounts of data [9] (real-world models
may have thousands of states). In [10], Leduc describes his
experience in implementing the control solution for a com-
plex DES system of 1016 states. His recommendations are
that large components be broken down into small interacting
modules (and he considers a module with three hundred
states as too big). The modules should be classified as
“fundamental” and “interaction”. This simplifies the design
process since the relations between modules becomes more
apparent. Unfortunately, this work focuses mostly on the
technical aspects of the implementation of control and the
discussion of the designer’s experiences is very brief. In
[11], the author points out that the modeling of the system,
specification and supervisor is a more arbitrary process where
each affects the other’s design. This is especially pertinent
to situations where the system is not yet built, or where
the system is implemented using programmable circuitry.
In the latter case, there is great freedom in designing the
“unrestricted” behavior of the system, since a large part of
the behavior is actually generated by the control circuitry.

An example of how problem solving in humans can be
examined and how the collected information can be used
in software design can be seen in the work of Rogerset
al. [12], [13], [14]. The authors conducted an observational
study of how radiologists, both novices and experts, use
X-ray images to make diagnoses. The relevant activities
and the types of information accessed were recorded and
analysed to determine common patterns [12], [13]. Then,
the results were used in the creation of a model of the
cognitive activity of radiologists in this task [15]. A software
application was developed to aid in the process of diagnosis
[14]. The organization of the information presented to the
users was tailored to match the the mental model. As well,
specific operations were available to manipulate the data so
that a successful diagnosis becomes more likely.

An approach similar to that of Rogerset al. was un-
dertaken in our work to investigate the cognitive processes
involved in problem solving of control of DESs and to
identify what data are accessed and how they are accessed.
We describe the methods used in the investigation. Then, the
preliminary results are presented, followed by a discussion
of the findings. At the end, we make some conclusions and
discuss the future direction of the research.

II. M ETHODS

The observation of human cognitive activity is not possible
directly. Early on in cognitive research, researchers used
the method ofintrospectionwhere subjects would report as
objectively as possible their own experiences [16]. How-
ever, this method proved to be scientifically unsatisfactory

due to the highly inconsistent data that were collected. In
[17], Ericsson and Simon describe a new method for the
collection of data, calledprotocol analysis, which has since
become ade factostandard when human cognitive activity is
examined. The method relies on asking the subjects to “think
aloud” while performing the given task. The verbalization is
recorded and later analysed. Unlike the introspection reports,
the verbal information is unstructured and is believed to
interfere much less with the performance of the task.

A. Observational study

In order to investigate the cognitive activity involved in
solving DES problems, we recruited five subjects of both
genders, all of whom were graduate students with some
knowledge of DES control. Two subjects had experience
only through a course on DES supervisory control theory and
the others had done research in the area. The subjects were
presented with DES problems and asked to “think aloud”
while solving them. A video and audio recording of their
performance was made. Furthermore, any additional artifacts
produced, such as written records or computer files, were
retained.

Each subject performed under two conditions (the order
of the conditions was randomly assigned). In one condition,
the subjects had to solve a simple problem which had been
extensively discussed during the DES course each subject
had taken. It involves a factory setup of machines, buffers and
a testing unit. In the other condition, the subjects had to solve
a problem which was formulated to be as close as possible to
the factory problem, however, in a hospital setting. The enti-
ties in this problem consist both of equipment and of people
(doctor, nurse, etc.) Both problems were cast in the original
paradigm of supervisory control, i.e., without extensionssuch
as partial observability, [18], etc. The subjects were freeto
solve them using modular control, [19], however, this was
not a requirement. In order to reduce the influence of the
solving of one problem on the solving of the other, subjects
performed under both conditions with a minimum of one
week’s time in between.

The tools that were available to all subjects were pen and
paper and a computer running a version of the IDES software
package. The software allows for the graphical modeling of
FSMs and for the performance of the algorithms needed to
compute a supervisor for a system. The subjects had up to
one hour to solve the problem under each condition and
they were free to switch between the pen and paper and
the software at any point and as many times as they wished.

B. Methods of analysis

The analysis of the data collected proceeded in separate
stages according to the recommendations described in [13]:

1) Use prior experience to define a taxonomy of DES
problem solving;

2) Refine the taxonomy from the observed data;
3) Encode the observations as per the proposed taxonomy;
4) Analyse the encoded form to find patterns and the

interleaving of cognitive activities.

1) Preliminary taxonomy:The initial definition of the
taxonomy resulted in the following outline:

1) Understand the problem. This includes activities such
as reading the description of the problem, deciphering
any diagrams, creating one’s own explanatory dia-
grams, etc.

2) Define the problem formally. This may be done in
parallel with understanding the problem. It includes
activities such as determining what the system is and
what the control specification is, describing the dynam-
ics of the system and the desired behavior, deciding on
the controllability of events etc. The description of the
dynamics involves low-level activities such as drawing
states and transitions, denoting states as initial and/or
marked and others. After the formal definition is ready,
the subject may “cross a line” and start referring only
to the formal model for all subsequent tasks.

3) Mathematical computations. This includes activities
such as inputting the formal model into software
(which may be done while defining the problem
formally), composing DES modules and running the
supervisor generation algorithm.

4) Verify output. This stage may be omitted by the subject
if they decide to trust the output from the mathematical
computations (which is likely when the output is huge).
Otherwise, the verification may proceed by using the
verbal or the formal definitions. Manual verification
includes activities such as glancing to discover irreg-
ularities in the result, performing the computations by
hand and cross-referencing with the output, counting
states/transitions, tracing of strings, etc. Automated
verification may involve algorithms such as checking
language containment (or the containment of arbitrary
strings) or checking controllability. If the output is
considered unsatisfactory, the subject may return to
any of the previous stages, depending on the specific
problem discovered.

2) Refined taxonomy:When the actual video recordings
were considered, it became apparent that the taxonomy based
on previous experience is not suitable for the encoding
of the data. The taxonomy is interpretive in nature: low-
level events have to be assigned to classes even though the
mapping is not unambiguous. Furthermore, many low-level
events are not defined very precisely and some activities are
even omitted. Thus, we decided to create a separate task
taxonomy where only low-level events are defined. The goal
was to minimize the degree of interpretation necessary to
apply the taxonomy by referring, when possible, only to the
mechanical properties of events.

The main distinction of events is along four axes:

• The subject verbalizes an idea;
• The subject examines the problem definition;
• The subject models using pen and paper and
• The subject models using software.

Additional events such as looking at the computer screen, in-
terrupting the problem-solving process (e.g., to drink water),

Some types of events
Axis Description

A Announce idea verbally

C Perform using the provided software

M Perform using pen and paper

R Read written material

Some types of entities referred to
Ref Description

C Computation/algorithm

E Event

M Module

S State

T Transition

Some types of stages
Stage Description

I Inspection

V Verification

Some types of actions
Act Description

B Modify appearance

C Count

I Make initial

R Remove

Some combinations
Code Description

AS Verbalize thought of a particular state

ATV Verbalize thought of verifying a transition

CM Create a module using the software

CTR Remove a transition using the software

CC Invoke a DES algorithm using the software

CB Change the appearance of the model in the software

MSI Make a state initial in the pen-and-paper model

ME Write down a new event on the paper

MTIC Inspect the pen-and-paper model by counting the transitions

TABLE I

PARTIAL LIST OF THE TAXONOMY USED IN MARKING UP EVENTS IN THE

VIDEO RECORDINGS.

switching between modeling with pen and paper and with
the software, etc. were also included but not assigned to a
specific axis. Besides the main four axes, events were further
refined as to whether they pertain to DES modules (separate
parts of the system and control specifications), events, states,
transitions, or DES algorithms. Certain stages such as model
inspection or model verification may also be identified if
possible. At last, each event may have a parameter to specify
the context: for example, the parameter of a “module” event
will be a specific module (such as “buffer 1”). A more
detailed description of the current taxonomy, as derived from
the observation of one video session, is shown in Table I. We
expect that as more video sessions are examined, it will be
expanded. For example, the subject in this video session did
not draw any additional explanatory diagrams, while other
subjects were observed to do so. Thus, events for diagram
drawing will have to be added.

3) Data encoding:After the current taxonomy of events
was prepared, we proceeded with the markup of the video
session which was used to prepare the taxonomy. In order

to set the timestamps of events as they occur in the video
sequence, we used software designed for the creation of
subtitles. Each event was marked up as a subtitle. The output
of the software, a file with subtitles, was further processed
by a custom-made application which converts it into a form
suitable for the following analysis. The markup was done by
a single person.

4) Analysis algorithms:The sequence of events in the
problem solving, as obtained from the markup of the video
session was analysed using n-grams and clustering. N-
gram analysis [20] is the determination of the frequency
of occurrence of a specific sub-sequence ofn items in a
larger sequence. For example, in the sequence “abcdbbc”,
the 2-gram (orbigram) ‘bc’ occurs two times, while the 3-
gram ‘bcd’ occurs only once. In our study we computed
both absolute and relative ratios of n-grams. An absolute
ratio is the ratio of the number of occurrences of a given n-
gram to the total number of n-grams in the sequence. We use
the term “relative ratio” to refers to the ratio of the number
of occurrences of an n-gram to the number of occurrences
of all n-grams which start with the samen − 1 items. For
example, in the sequence “abcdbbc”, the relative ratio of the
bigram ‘bc’ is 2/3 since there are two occurrences of ‘bc’,
one occurrence of ‘bb’ and no other bigrams starting with
‘b’. In comparison, the absolute ratio of ‘bc’ is2/6 since
‘bc’ occurs twice and in the sequence there are six bigrams
in total.

The markup of the video sequence results in a sequence of
low-level events. This is convenient for the analysis of how
certain actions interleave, however, it is difficult to use the
data to answer questions at the meta level, e.g., what type
of activity does the subject engage in at a given moment.
Thus, we decided to use unsupervised clustering of the data
to obtain aggregates.

Unsupervised clustering [21] is a method to assign data
items to separate classes without having some prior idea of
how many of these classes there should be and what the
criterion of distinction is. The clustering algorithms utilize
a measure of the distance between individual items as the
base for generating classes and assigning items to them. A
number of algorithms are available, however, none of the
algorithms seemed suitable for the task of clustering our
data. Thus, we implemented a custom clustering algorithm
(Fig. 1). Each data item is assigned a type depending on a
chosen combination of its properties. For example, items in
our study may be assigned type depending on what the low-
level events refer to (i.e., modules, events, states, transitions
or algorithms). Clusters also have types and the type of a
cluster is intended to reflect the type of the majority of its
items. Let type stand for the type of item or cluster and
time stand for the time of an item or the mean time of
all items in a cluster. Given two clusters,A and B, let C
denote the union of all clusters between them, inclusive;C =⋃

time(D)∈[time(A),time(B)] D. In other words,C represents
the cluster which will result in the merging ofA and B.
The distance,d, betweenA andB is computed as follows.

cluster(list) {
/* returns Λ, a set of clusters */
Λ := ∅
for(a ∈ list)

A := {a}
type(A):=type(a)
Λ := Λ ∪ {A}

if(|Λ| <= 1)
return Λ

do
T := {(I, J)|I, J ∈ Λ, time(I) < time(J)}
M := {(A, B)|d(A, B) = min(I,J)∈T d(I, J)}
(C1, C2) :=random((A, B) ∈ M)
if(d(C1, C2) > 0)

break
for(C ∈ {D|time(D) ∈ [time(C1),time(C2)]})

Λ := Λ \ {C}
/* type(C1) remains unchanged */
C1 := C1 ∪ C

Λ := Λ ∪ C1

while(|Λ| > 1)
return Λ

Fig. 1. Custom clustering algorithm

If type(A) = type(B), then

d(A,B) =
∑

c∈C

abs(time(C) − time(c))

+N × |{c ∈ C|type(c) 6= type(A)}|

−P × |{c ∈ C|type(c) = type(A)}|,

otherwised(A,B) = ∞. Here P and N are coefficients
which can be used to parametrize the algorithm. The algo-
rithm starts off with one cluster per item; and the type of
each cluster equals the type of the item contained. Then, the
algorithm enters a loop where, at each iteration, the most
beneficial merging of clusters is performed (the two clusters
with least distance). Notice that only the merging of clusters
of the same type is considered (since the distance between
clusters of different types is∞). Furthermore, all clusters
on the time line betweenA andB will also be merged into
the new cluster. The loop terminates when there is only one
cluster left or when the distance becomes positive.

III. PRELIMINARY RESULTS

The preliminary results of the analysis of one video session
are presented next. The subject was given the task of finding
a supervisory control solution for a DES consisting of a fac-
tory setup. Two machines and a test unit are interconnected
via buffers into a processing line. The control specification
is to prevent underflow or overflow of the buffers. A more
detailed description of this problem can be found in [22]. The
subject proceeded by modeling the system and specification
first on paper. In the subsequent discussion, we will call
this period of the problem-solving “paper period”. After
this, the subject used the IDES software to input the model,
perform algorithmic computations, verify the solution and
correct the model. Subsequently, we will refer to this period
as “computer period”.

A. Duration

One comparison of interest is how long different parts
of the problem solving lasted. If we take into account all
interruptions, such as necessary software setup procedures,
the paper period lasted 12:06 min, while the computer
period lasted 34:22 min. This makes almost a 1/3 ratio
of how the solving activity was distributed in time. It has
to be considered, however, that the paper period included
only the reading and understanding of the problem and the
initial formal modeling. The computer period included the
data entry, the performance of the computations and the
verifications of the produced solution. The latter resultedin
the subject discovering an error in their formal model, so the
model had to be fixed and the result re-verified. Given these
activities, it is not surprising that the subject spent 7:17min
examining the problem definition during the paper period.
They spent only 3:47 min in the computer period examining
the problem definition and the models they had produced.

During the encoding of the video session it became appar-
ent that the subject engages very frequently in modifications
of the visual appearance of the data. This included most
frequently repositioning of states and transition labels.A
further look into this revealed that the subject modified the
visual appearance on 243 occasions during the computer
period. This consists of approximately 33% of all encoded
events for the period. If one considers that each modification
lasts at least 2 sec, this means that the subject spent at least
8 min, or 23% of the computer period, changing the visual
appearance of the models.

B. Reference of entities

In order to get a better understanding of how a task
is performed, it is important to look at what tools are
used and in what sequence. From the full transcript of
the video session, we extracted only the data which reflect
this aspect of problem solving. For each encoded item, we
observed whether the subject refered to one of the following
entities: modules (M), events (E), states (S), transitions(T)
or computations (C). By “reference” we mean the subject
mentions such an entity or directly manipulates it (such as
the drawing of a state on the sheet of paper). Then, we looked
at the sequence at the low level and, after clustering the data,
also at the high level.

1) Low-level analysis:We consider the analysis of the
original data low-level since the data reflect low-level
activities—such as the actual placement of a transition witha
mouse click or the verbal reference to a DES module. Such
data may reveal some regularities in how a person would
perform the task of finding a DES control solution. We used
bigram analysis to obtain the absolute and relative ratios
(see Section II-B.4) of all bigrams which appeared in the
process of problem solving, both in the paper period and in
the computer period. A chart of the data is shown in Figs. 2
and 3.

In Fig. 2 the bigrams are sorted according to their fre-
quency during the paper period. It can be seen that the most
common bigrams are the ones that refer to the same entities,

i.e., “S,S”, “T,T”, and “E,E”. This means that the subject was
likely to continue working with the same entities without
interruption. This is further supported by the high relative
ratios of these bigrams; the relative ratios serve as a predictor
of how likely is the occurrence of a given bigram if the
subject refers to the first entitiy in the bigram. For example,
in the paper period, if the subject referred to a transition,it
is about 65% likely that the next entity they will refer to will
be a transition—since the relative ratio of the bigram “T,T”
is 65%. It can also be seen that the subject quite frequently
alternated between working with states and with transitions
(bigrams “S,T” and “T,S”). This is probably due to the way
the subject drew their DES models.

In Fig. 3 the bigrams are sorted according to their fre-
quency during the computer period. When comparing the
data with the ones from the paper period, it can be seen that
the histogram of the ratios is similar: most common are the
bigrams with entities of the same type and the bigrams of
alternation between states and transitions. These bigrams, as
in the paper period, have high relative ratios. It is interesting
to notice, however, the differences between the two periods.
It appears that only in the computer period did the subject
have a longer stretch of working with modules; the “M,M”
bigram has high absolute and relative ratios only in that
period, while, during the paper period, dealing with modules
usually occurred only alongside other activities. Another
interesting observation is that working with events occurred
in a very different sequence during the two periods. While in
the paper period, the bigrams “E,M” and “M,S” had high ab-
solute and relative ratios, in the computer period, the bigrams
“M,E” and “E,S” dominated both ratios. Observations of the
video session confirm that during the modeling on paper the
subject preferred to list the DES events, then proceed with the
modeling of a module. During the computer modeling, the
interface of the software required that a module be created
first, before entering any events.

2) High-level analysis:While the low-level analysis re-
veals how problem solving is executed, it is not suitable for
the investigation of the significant steps which the subject
takes. Thus, the clustering algorithm described in SectionII-
B.4 was used on the low-level data to obtain groups which
signify related activities. An example of the result of the
clustering algorithm for the subject’s reference to DES
modules is shown in Fig. 4. Each cluster is tagged with
the entity to which the subject consistently refers during
the given set of activities. Thus, clusters can be viewed as
aggregations of the low-level data and can be analysed in the
same way.

The n-gram analysis of the clustered data from the paper
period did not reveal any consistent patterns, except a general
trend towards modeling by using entities in the sequence
“M,S,T”. The most significant part of the results for the 4-
gram analysis of the computer period are shown in Fig. 5.
It can be seen that the most frequent sequence of entities
referred to during the use of the software is “M,E,S,T” (or
a rotation thereof). In other words, the subject dealt with
a module, then the events, then the states and then the

Fig. 2. Chart of the ratio of occurrences of bigrams. The data are sorted according to the absolute ratio of occurrence during the pen-and-paper modeling.
‘Paper’ refers to ratios during pen-and-paper modeling. ‘Computer’ refers to ratios during use of software. ‘AR’ stands for absolute ratio; ‘RR’ stands for
relative ratio.

Fig. 3. Chart of the ratio of occurrences of bigrams. The data are sorted according to the absolute ratio of occurrence during the modeling with software.
‘Paper’ refers to ratios during pen-and-paper modeling. ‘Computer’ refers to ratios during use of software. ‘AR’ stands for absolute ratio; ‘RR’ stands for
relative ratio.

transitions. This result was supported further by the bigram
and 3-gram analysis of the same data. Visual inspection of
the clustering and the video recording reveals that this is,
indeed, the sequence which the subject preferred to follow.
However, it has to be noted that this sequence is prevalent
only in the first part of the computer period, i.e., when the
subject inputs the models into the software. It is possible that
the exact form of the sequence is influenced by the software
which imposes constraints on the order in which data can be
input (e.g., it is not possible to input events unless a module
is specified).

Another result which can be noticed from the data for the
computer period is that computations (C) are most referred to
after references to modules. The only bigrams which contain
a ‘C’ in the second position are “M,C” and “S,C” and the

ratio of occurrence of “M,C” is seven times greater than the
ratio of “S,C”. This indicates that the subject usually had
to “back-up” from considerations of particularities (suchas
states and transitions) and think at the module level in order
to consider the application of algorithms.

The study of the distribution of references over time
revealed that both during the paper period and the computer
period, the subject refers to events (E) only during the first
stages of modeling. The set of events is relatively stable once
built. Another thing noticeable through visual inspectionis
that, in the computer period, when the subject is verifying
their solution, in the beginning they focus primarily on states
and then primarily on transitions. This is seen on both
occasions of verification.

Fig. 4. Clustering of the beginning of the transcript for theperiod when
the subject used software for problem solving. Data points are arranged on
the Y axis according to the DES module they refer to. The X axis represent
the flow of time. Uniformly colored intervals of points show clusters.

C. Reference of modules

After looking at how tools (modeling entities) are used in
the process of problem solving, it is important to see what
model data are accessed in what way. For this purpose, we
extracted from each encoded item in the video session what
DES module it referred to. The modules considered were
machine 1 or 2 (M), test unit (TU), buffer 1 (B1), buffer 2
(B2), complete system composed of the machines and the
test unit (G), complete specification composed of the two
buffers (E) and supervisor (U).

The n-gram analysis of the low-level data for both periods
reveals that the subject, once working on a specific module,
is likely to continue working on it (i.e., sequential activities
are not likely to refer to different modules). This is evi-
dent even in the 4-gram analysis (where “M,M,M,M” and
“B1,B1,B1,B1” are the 4-grams with highest absolute and
relative ratios). This result, however, is fully expected since
a person is highly unlikely to be working concurrently on
two modules and, for example, model transitions by making
one in each and alternating between the two modules.

Again, in order to look at how the subject refers to
modules at the high level, we used the clustering algorithm to
aggregate the data. A part of the resulting clusters is shown
in Fig. 4. The n-gram analysis of the clusters did not reveal
any notable results with one exception: in the second part of
the computer period the subject dealt most frequently with

Fig. 5. Chart of the ratio of occurrences of 4-grams with references to
modules, events, states, transitions, and computations. Thedata are sorted
according to the absolute ratio of occurrence during the modeling with
software. ‘AR’ stands for absolute ratio; ‘RR’ stands for relative ratio.

the supervisor computed for the control solution (U). One
third of all clusters referred to the supervisor. This is not
unexpected, since the subject dedicated a large portion of the
computer period to the verification of the computed solution.

The visual inspection of the clustered data reveals a
few interesting observations. In the paper period, the mod-
eling proceeded by referring roughly to the sequence
“M,T,G,U,B1,B2,E”, while in the computer period, the se-
quence was roughly “M,T,B1,B2,G,E,U”. The problem de-
scription refers to the modules in the order “M,T,B1,B2”;
most likely this played a role in the order in which the DES
modules were modeled. The significant difference between
the two periods is that during the pen-and-paper modeling,
the subject chose to investigate the composition of the
complete system (G) before modeling the buffers, while
during the modeling with software, this was delayed until
all individual modules had been modeled. The appearance
of a reference to the supervisor (U) during the paper period
does not imply that a supervisor was built (indeed, it is
impossible to do it without first modeling the specifications).
The reference was only brief and verbal—indicating that the
thought of the supervisor module had crossed the subject’s
mind. Another thing to note is that in the computer period,
during the modeling of both buffer 1 and buffer 2, the subject
interrupted the process to look first at the machine modules
and then at the test unit module (see Fig. 4). The reason, as
indicated by the subject, was that they wanted to check again
the exact properties of the events in these modules since they
needed to enter the same events when modeling the buffers.

IV. D ISCUSSION AND CONCLUSIONS

The results presented in this paper are only preliminary
in the sense that only one video session of the observational
study has been analysed. The process of defining the task
taxonomy, marking up of the video record, and analysing the
data was rather exploratory since no previous work exists on
the problem solving of DES supervisory control. At this point
it is too early to draw any significant conclusions, however,
as described next, some useful information can already be
recognized from the analysed data. The main contributions
of this work are the following:

• The proposition of a formal approach to the investi-
gation of human performance in DES problem solv-
ing, using information about the fundamental cognitive
processes;

• The creation of an initial taxonomy of the problem
solving activity from the human perspective; and

• The collection of performance data from an obser-
vational study and the development of a method for
analysis.

Our findings show that, indeed, there are some discrep-
ancies in how humans proceed in solving a DES control
problem using pen and paper versus software. During the
pen-and-paper modeling, the subject spent very little time
actually creating new information (the models) in com-
parison to how much time they spent examining existing
information (reading the problem statement). During the use

of the computer, they spent the majority of the time creating
new information rather than examining existing information;
the only exception was during the verification of the solution.
One surprising result is that the visual appearance of the
models was of such great importance to the subject—as they
spent about a quarter of the time adjusting the appearance of
the models. This indicates that one of the areas where DES
software designers should focus on is the advancement of
the visual representations.

The discrepancies between the workflow during pen-and-
paper modeling and modeling with software are, in our
opinion, most probably due to two factors:

1) the different stages of problem solving: when pen and
paper was used, the subject was translating verbal
specifications into a formal model, while when the
software was used, the subject was translating a written
formal model into a digital model; and

2) the interface of the software imposed constraints on the
modeling which are not present when pen and paper
are used.

If software is to offer support in the process of initial
modeling (not only in the input of existing models), it is
advisable that as many constraints as possible be removed.
The user should not be forced to follow a specific sequence
of steps only because this is what makes most sense in
the underlying implementation of the software. Examining
what information is accessed and how during pen-and-paper
problem solving may give important feedback to software
designers.

The rest of the information obtained through analysis is
mostly confirmatory in nature. As expected, problem solving
proceeds in “chunks” of related activities, e.g., relatingto the
same module. Furthermore, it can be seen that thinking about
DES computations requires considerations at the level of
modules, not states and transitions—and this is not a surprise.

A. Future work

The research presented in this paper is only the first step
of a much larger investigation. All ten video sessions have
to be encoded and then analysed. The taxonomy of DES
problem solving has to be revised to include activities which
other subjects engage in but the current subject does not.
Additional methods for pattern discovery should also be
employed to supplement n-gram analysis and clustering.

The main goal of this study is to create an approximate
model of the cognitive processes involved in DES problem
solving. If this succeeds, we will use the information to
design a new user interface for DES software and implement
a back-end which will use the cognitive model to enhance
the software support offered to DES researchers. In addition,
the new interface will have to be tested to check what impact
the introduced changes have on the performance of users.

As a separate venue of investigation, an online statistical
analysis of the low-level actions in the software may allow
us to distinguish and create “use profiles”—to adapt better
to the requirements of users.

V. ACKNOWLEDGMENTS

We would like to thank Brian Butler from the Department
of Psychology, Queen’s University and Dorothea Blostein
from the School of Computing, Queen’s University. Their
useful advice helped in setting up the observational study
and analysing the data.

This work was supported, in part, by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,”SIAM Journal on Control and Optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[2] “CTCT software.” Department of Electrical and Computer
Engineering, University of Toronto, Canada. Available at
http://www.control.toronto.edu/DES/.

[3] C. M. Enright and M. Barbeau, “An evaluation of the TCT tool for the
synthesis of controllers of discrete event systems,” inCanadian Con-
ference on Electrical and Computer Engineering, vol. 1, Vancouver,
BC, Canada, September 1993, pp. 241–244.

[4] “DESUMA software.” Department of Electrical Engineering and
Computer Science, University of Michigan, USA. Available at
http://www.eecs.umich.edu/umdes/toolboxes.html.

[5] “IDES software.” Department of Electrical and Computer
Engineering, Queen’s University, Canada. Available at
http://www.ece.queensu.ca/directory/faculty/Rudie.html.

[6] “Supremica.” Department of Signals and Systems, Chalmers Univer-
sity of Technology, Sweden. Available at http://www.supremica.org/.

[7] N. Cowan, “The magical number 4 in short-term memory: A recon-
sideration of mental storage capacity,”Behavioral and Brain Sciences,
vol. 24, no. 1, pp. 87–114, 2001.

[8] A. J. Dix, J. E. Finlay, G. D. Abowd, and R. Beale,Human-Computer
Interaction, 2nd ed. Prentice Hall Europe, 1998.

[9] R. Spence,Information Visualization. Addison-Wesley, 2000.
[10] R. J. Leduc, “PLC implementation of a DES supervisor for a man-

ufacturing testbed: An implementation perspective,” Master’s thesis,
Department of Computer and Electrical Engineering, University of
Toronto, 1996.

[11] M. M. Wood, “Application, implementation and integration of discrete-
event systems control theory,” Master’s thesis, Department of Electri-
cal and Computer Engineering, Queen’s University, 2005.

[12] E. Rogers, R. C. Arkin, M. Baron, N. Ezquerra, and E. Garcia, “Visual
protocol collection for the enhancement of the radiologicaldiagnostic
process,” inProceedings of the First Conference on Visualization in
Biomedical Computing, Atlanta, Georgia, USA, May 1990, pp. 208–
215.

[13] E. Rogers, R. C. Arkin, and M. Baron, “Visual interaction in diagnostic
radiology,” in Proceedings of the Fourth Annual IEEE Symposium on
Computer-Based Medical Systems, Baltimore, Maryland, USA, May
1991, pp. 170–177.

[14] E. Rogers, “VIA-RAD: a blackboard-based system for diagnostic
radiology,” Artificial Intelligence in Medicine, vol. 7, pp. 343–360,
1995.

[15] ——, “A cognitive theory of visual interaction,” inDiagrammatic
Reasoning. The AAAI Press and MIT Press, 1995, pp. 481–500.

[16] J. R. Anderson,Cognitive Psychology and Its Implications, 6th ed.
New York, New York, USA: Worth Publishers, 2005.

[17] K. A. Ericsson and H. A. Simon,Protocol Analysis, revised ed.
Cambridge, Massachusetts, USA: The MIT Press, 1993.

[18] F. Lin and W. M. Wonham, “On observability of discrete-event
systems,”Information Sciences, vol. 44, no. 2, pp. 173–198, 1988.

[19] W. M. Wonham and P. J. Ramadge, “Modular supervisory control of
discrete-event systems,”Mathematics of Control, Signals, and Systems,
vol. 1, pp. 13–30, 1988.

[20] C. Y. Suen, “N-gram statistics for natural language understanding and
text processing,”IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. PAMI-1, no. 2, pp. 164–172, 1979.

[21] S. Theodoridis and K. Koutroumbas,Pattern Recognition, 2nd ed. San
Diego, CA, USA: Academic Press, 2003.

[22] W. M. Wonham, “Notes on supervisory control of discrete-event sys-
tems,” Available at http://www.control.toronto.edu/DES/, July 2004.

