Design of Discrete-Event Systems Using Templates

LENKO GRIGOROV lenko.grigorov@banica.org
School of Computing, Queen’s University, Kingston, Ontario K7L 3d&nada

Jost EDUARDO RIBEIRO CURY cury@das.ufsc.br
Department of Automation and Systems, Federal University of Sarit@iGa, Floriaibpolis, Santa Catarina, Brazil

KAREN RUDIE karen.rudie@queensu.ca
Department of Electrical and Computer Engineering, Queen’s WsityeKingston, Ontario K7L 3N6, Canada

Abstract—A new methodology for the design of DES con- for the whole system. The benefits pointed out by the
trol is proposed which allows for the creation of high-level authors include significant reduction of the time needed
conceptual designs by using encapsulated low-level elements.t0 design controllers, lower cost of the project and more

The approach can be used within the standard framework of . - .
modular supervisory control. The notion of DES templates is robust handling of failures. However, this approach als® ha

introduced, where typical behaviors for both DES modules and Some disadvantages. It is assumed that almost all system
specifications are represented in an abstract way. The control behavior can be described as the concurrent execution of
engineer creates instances of these abstractions and specifiessimple units without much interaction. This is not suitable
the way the instances interact. System modeling and the design o\ the definition of global specifications, such as the agintr
of spemﬂcgtlons occur S|m.ultaneously_. Speed arjd robustness for nonblocking. Furthermore, the methodology is not cast
of the design process are improved since there is no need to "~ ' . ! S
consider details or to reimplement similar parts of a system. Within the supervisory control framework and it cannot take
The proposed methodology is applied to a small robotic testbed advantage of the algorithms therein.
to get real-world feedback. In this work, we propose a new methodology for the design
of DES control. We introduce the notion of DES templates
within the framework of supervisory control. Typical behav-
In control engineering, the possible behavior of some sysars for both DES modules and specifications are represented
tems can be described as a set of sequences of discrete evéntan abstract way. The control engineer creates instarfces o
Ramadge and Wonham [10] propose a theoretical framewotthese abstractions and then needs only to specify the way
called Supervisory Control Theory, for the modeling andhe instances interact. System modeling and the design of
control of such systems. In this framework, the discretgpecifications occur simultaneously. Speed and robustfess
events are instantaneous, spontaneous, and certain Iconthe design process are improved since it is not necessary
can be exercised by preemptively preventing the occurrent® deal with details of the system behavior, as well as to
of some of them. Systems modeled in this framework aneimplement similar parts of a system. The computation of
called discrete-event systems (DESs) and the entity exercthe supervisory solution can be automated. The methodology
ing the control is called aupervisor was implemented in software and support for the generation
Practical implementations of this theory, however, have ruof Programmable Logic Controller (PLC) code was added.
into a number of problems. The most significant problem i¥hen, we applied the approach to obtain a control solution
what is called “state-space explosion”. The state compylexifor the hardware of a small system.
of a system model may grow exponentially with the number
of participating subsystems. Another problem for the use of
the theory in practice is the fact that modeling a system and The basic theory of supervisory control of discrete-event
verifying the end result are difficult and non-transparemt f systems [10] has been extended by researchers in attempts
the users. Further complications arise from the fact that thto resolve some of the problems in its application. The
usability of software packages for DES control is generallproblem of state-space explosion has been addressedlpartia
unsatisfactory and that generally there is little supporttie by consideringmodular or hierarchical supervision and by
use of a computed supervisor in the control of a real systerdealing with systemsncrementally A discussion of these
While there does not seem to be an easy solution topics, relevant to our paper, can be found in [14], [9] arid [1
this complex set of issues, the use of predefined DES unitsspectively. Of the methods mentioned, modular supenvisi
by engineers may lead to a much easier application skems to be most mature. The system is modeled as a set of
supervisory control. In [5], the authors describe an apgroa separate modules or subsystems which may interact. Usually
where the controlled behavior of a discrete-event systeoontrol specifications can then be given in a modular fashion
is designed using a set of very simple specifications. Eaas well—concerning only a subset of all the modules. The
specification is built from a prototype structurefeanplate reduction of complexity is a result of being able to compute
and exercises control over a single aspect of the systemseparate, smaller, supervisors for each separate sptaifica
such as the operation of a gripper. All specifications artncremental approaches to DES control usually also rely
executed in parallel and thus, simultaneously, providérobn on having a modular system model. Then, compositions of

I. INTRODUCTION

Il. PRELIMINARIES

startx

modules are constructed only as needed in order to determine
a given property of the system. In hierarchical control, the

base system is usually abstracted in a specific fashion and T,

then supervisors can be computed for only the simpler high- () Modules G rotating table (substitute7”
level model of the system. Unfortunately, the research done ‘Eg[]b‘;)iiut'g%,t)'c arm (substitute) and drill
on hierarchical supervision is more disparate and a urgfyin '

theme is lacking [7]. Modular control is not without problem enterAs, enterBy

either. When separate supervisors are constructed for each
specification, it is not possible to predict what the netatffe N -
will be of the simultaneous application of all supervisors. o cxithe, oditBs _
Sometimes, due to some interdependence between the dif- (b) SpecificationsE’.: mutual exclusion between
e table and arm (substitute ‘1’ for **’) and mutual
ferent control policies, the system may block. Thus, after exclusion between table and drill (substitute ‘2’).
the separate s_uperwsors are Cpns_trUCted’ itis necess_aryFib. 1. The modules and specifications used to illustrate ¢neplate
check if the simultaneous application of these supervisoggsign methodology.

will lead to blocking. For this purpose, all supervisors dav

to be composed, which in some sense forfeits the benefit thgle will consider three system modules: a rotating table,
is achieved by constructing separate supervisors. However ropotic arm and a drill. In this subsystem, there has to
since blocking is a global property, in the general caseethehe mutual exclusion between the table and each of the
is no way to avoid the global check. other components so that the table does not rotate while
During our personal experience with the application ofnother module performs an operation. Thus, we will use two
supervisory control, we noted further complications. irs specifications: one for the table and the arm, and one for the
control engineers are required to learn about finite-staigple and the drill. The system modules and the specificaition
automata (FSAs) and the modeling of systems and spegire shown in Fig. 1.
fications using FSAs. The process of modeling is quite slow The framework for template design is largely based on
and requires a lot of attention in order to avoid errors. Thghe work of Santost al. [12], [13]. The authors propose a
presence of an error in the design is not readily ObserVamﬁrethodology for conceptual design of DESs useities
The design of interaction between different system modulegd channels Entities are the active parts of the system
is achieved through synchronization on common events. T B.g., workstations). Channels are passive parts of thersys
designer needs to constantly maintain an overview of whigyhich facilitate the transfer of matter and energy between
events are used for that purpose. A second complicatiogptities (e.g., conveyor belts). This framework is suitabl
partially a result of the method for synchronization, istthasgy the modeling of complex systems since it allows the
system models are usually designed on a per-use basissijthultaneous definition of both structure and functiogalit
is not trivial to reuse models in other projects. Many times |n our framework we decided to keep all the basic propo-
it is necessary to start modeling from scratch even thougiitions of [13], however, we decided to cast the whole idea
parts of the model have been designed on previous occasio§rely in DES terms. A system model consists of a set
Third, currently DES software packages offer little, if any of modules (subsystems), a set of channels (specifications)
support for the implementation of FSA-based supervisors $gd links between the modules and channels. Modules and
that they can be used with real equipment. channels as we use them here are similar to the subplants
and local specifications in [3]. Finite-state automata (ESA

o _are used for the models. Létand.J be index sets such that
The template method for DES design is substantiated| |7 ¢ N and/ N .J = §. The set of modules is

greatly by the observations made during a study of how

humans solve DES control problems [8]. When faced with M ={G; = (2, Q4,6i, qoi, Qmi) | i € I}
a new problem, subjects frequently engaged in drawing &hd the set of channels is

simple diagram of interactions between parts of the system

which needed to be modeled. It appeared that the subjects N={G; =(3;,Q;,0;,905,Qmj) | j € J}.

liked to isolate different aspects of a system before th? h I aul d ch s h o b
proceeded with the low-level modeling. These observatio urinermore, -ail modules and channeis have 1o be asyn-

IIl. TEMPLATE DESIGN OFDESs

led to the proposal for a new methodology for the desigﬁ ronous, 1.€.,

of DESs, where control engineers can focus on assembling Vi#,Gi,Gj € M :%;NY; =0
blocks of subsystems and specifications instead of worrying o

about every little detail of the system. Vi#j.Gi,G; e N: 5N =0
A. Framework VG € MGy e N:%;n%;=0.

Before we proceed with the theoretical aspects of oufhe requirement that modules be asynchronous is not a
work, we will describe a part of the system from Section Vstringent restriction as discussed in [3]. The benefit ofrigav
It will be used to illustrate the steps of the new methodologyasynchronous modules is mainly in being able to make more

starty, startp

uniform assumptions about the system. If some modules are

not asynchronous, they can be composed until there are no

dependencies between modules. The channels have to be fishy, iy

asynchronous because they describe generic specifications

It is only with the help of links that the specifications

are synchronized with the given system. In our example,) o o

M = {Gy,Gr,Gp} and N = {E,, B>} (see Fig. 1). this method is satisfied, i.e., the participating modules ar
In order to relate modules and channels, and determi@ynchronous. All modules which are linked to a channel

what specifications should be enforced on the differefR@rticipate in the subsystem influenced by the specification

subsystems, one would link the appropriate events. Légtermined by the channel. L&t = (%, Q, 0,0, Qm) € N

Sar = Ug. e i be the set of all events in the modules and® @ channel. Then defir@ = (X', Qp, 0", g0, Q) as the

i

Sn = Uq oy ; be the set of all events in the channelsSynchronized chann&l where all channel events have been
Then, the links in the system model will be given by thdeplaced with their corresponding module events, i.e.,
function o % 5 Y ={o|3IreX, C(r) =0},

N T 5'(g,0) = 8(g. 0~ (0)-
In other words, the function defines links between events .
channels and events of modules. The interpretation of t%faurthermore, define
link C(7) = o is that the eventr in the given channel C(G)={G;|G; e M,%;NY # 0},
should be considered equivalent to the ewerdf the given t of modules infl d
module—thus relating the generic specification to the givepi]e Set of modules Influénce tdy. .

Ién our example, in order to synchronize the chanhg)

system. Synchronization between the modules and channﬁ1 ¢ laced ified by the functib
is established, in effect defining the protocols for the ¢fan € evenls are replaced as speciiied by the Iunction
(see Fig. 2). Channely is synchronized in a similar way.

of information between parts of the system. For@jle N,
the restrictions of the function, Furthermore((E1) = {Gr, Gr} andC(E,) = {Gr, G}

Fig. 2. The synchronized version éf; .

Cla, : Ej — Xum, For every channel7; € N, all the modules influenced by

L , it are composed via synchronous product.
have to be injective to ensure the consistency of the model. P y P

The function G]sys = (Ziyb’ Qiyw 62;/5’ qésym ng,sys) = ||C(GJ)G1

-1, ZN
¢ ixm =2 Then all events in the subsystem which do not appear in the
is the inverse ofC' and, givenG; € N, the restriction of synchronized channel are applied as self-loops to allstate

Clto Gjis the synchronized channel, i.e., the channel has no influence
Cla, :Sm — %, on the occurrence of these events.

whereC—'|¢, (o) equals the only element &~ (c) N 3; Gl pee = selfloog &}, 37, \)

if it exists, and is undefined otherwise. Finally, the algorithm from [10] for the construction of

In our example, we need to link channgl to the table, e sypremal controllable sublanguage of the synchronized

G, and the robotic armG . Similarly, we need to link%2 channel with respect to the relevant subsystem is invoked.
to the table and the drill¢7 . The channel events marked

with “A” will be linked to events of the table, while the event S; = supcolt G, G,..)-
marked with “B” will be linked to the arm (inZ;) and the As a result

. X . local supervisors for each channel are con-
drill (in E5). Thus, we define the functio@' as follows: P

structed.
C(enterA) = starty; C(exitA;) = finishy; In our example Gy, = Gr||Gr and G, = Gr|Gp.
C(enterB) — starty; C(exitB;) = finishy; All events in each subsystgn; are linked to t_hfa corresponding
) o channel, e.g., the events @;,, are start, finishr, star
C(enterAy) = starty; C'(exitA;) = finishy; and finish,—and all of them are used in the synchronized
C(enterB) = starty; C(exitB,) = finishp. channelE; (see Fig. 2). Thus, no self-loops are introduced
into the channels, i.e¢},.. = Ef andG?,.. = Ej. The

e o :
:;d% r—elsun’f;cr?irss;(an;iictA (finishy) = {exitA, exitA,} supervisorS; obtained forGY,.. with respect toG},, is
|5)= 2 shown on Fig. 3. It is easy to see that the simultaneous

After a system is modeled. in the proposed fra.meworkc)peration of the table and the arm is avoided. The supervisor
modular control can be applied to obtain supervisors fofror G2 is analogous

e L : : Spec
the se_parate sp_ecmcatlons. Th|s_ IS pos_S|bIe since, uhger { The last step involves checking whether the supervised
right interpretation, the model is equivalent to that of

stem is nonblocking, as defined in [3]. As long as the
regular modular system. In our work we propose the us’sev

o) upervisors are nonconflicting, i.e.,
of an optimized version of modular control, namely loca o
modular control [3]. The precondition for the applicatioh o la,S; = lla,S;,

finishy, startr C. Parametrization

A further improvement to the template design method-
ology can be made by considering parametrization of the
template behavior. For example, if one would like to create
ys- templates for buffers, a separate template has to be con-
structed for all buffer capacities that need to be consilere

the nonblocking property is satisfied and, furthermore, th-g-, buffer with two slots, buffer with three slots, etc.)
concurrent operation of the modular supervisors is optimdloWever, it can be easily seen that the basic workings
(i.e., equivalent to a monolithic solution). In our examilee Of @ buffer are the same regardless of capacity. It would

two supervisors for channels; and E/, are nonconflicting. P& much more convenient if there were a single “buffer”
template which is parametrized in terms of capacity—and

B. Templates then at instantiation one would be able to choose the specific
)) capacity to be used.

The next advantage of our methodology is that it allows gpe possible approach to the parametrization of FSAs is
the use of templates. A template is simply a model of SoMgescribed in [2]. There, a regular FSA is augmented with
discrete-event behavior. In the supervisory control Sgfti 5 gata collection The data collection is a vector of scalars
the model would be an FSA. In other words, any FSA caghich can range over some set. A vector of unary functions
be a template. The idea behind templates is that if they defifeassociated with each transition in the FSA. For example, a
some frequently used behavior, one need not manually cre@jgifer can be modeled as a single state with two self-looped
a separate FSA each time this behavior is needed. '”Steﬁ‘&ansitions, “insert” and “remove”, and a single integetfie
the software can make a copy of the templateinstantiate gata collection to keep track of the number of items in the
the template. buffer. Then, the functions+1” and “—1” will be applied to

Let G = (2,Q,6,90,Qm) be a template. The instancethe integer when “insert” and “remove”, respectively, accu
with indexp is defined adns(G, p) = (3,5, @, 0p,90,@m), In such a system, control can be based on predicates about
where the events afi are indexed withp. l.e., the current state of the system and on the current value
of the data collection. The authors propose a method to
2p ={op |0 €T}, compute the supremal controllable sublanguage of a system
op(q,0p) = (g, 0). by incrementally backtracking with the predicates unt# th

. control decisions do not attempt control of uncontrollable
Thus, for example, creating the DES modules for ten works

) . > "évents. Unfortunately, the use of this model may easilyltesu
stations would be reduced to instantiating the correspandi, noy_regular behaviors and specifications. This is theaea

template with ten different indexes. Since the copies can %y the model cannot be readily applied in the template
made automatically, t.he process is both faster and Igss eMBamework proposed in this work. A potential solution would
prone. Furthermore, if the templates have been designed Py v, restrict the type of data collections that can be used. F
experts and thoroughly tested, any user can use them Wi, nhje each scalar in a data collection could be regfricte

the same degree of reliability. to belong to a closed integer interval. However, even in this

Since templates can describe both system behavior (i-gase it is necessary to find an efficient transformation from
modules) and restrictions on behavior (i.e., channels)uie o parametrized model into a “simple” FSA.

of templates within our framework is very natural. Suppose
there is a |ibrary of temp|ateEZb — {Gk | ke K}’ where IV. SOFTWARE PACKAGE FOR TEMPLATE DESIGN
K is an index set such thak| e N, KNI =0=KnJ. The theoretical foundation of template design does not
Then, the set of moduled/, participating in a design can be require any graphical representations. However, as it has
created by instantiating the required templates,¥@;, € M been discovered in practice [6], [8], the lack of graphical
(wherei € I), 3Gy € Lib : G; = Ins(Gy,1). Since the representation may significantly influence the usabilityaof
events of every template instance are named in a unique wagftware package. Thus, one of the principles we decided
all modules will be asynchronous as required. Similarlg, thto follow in designing our software was to use a graphical
set of channelslV, can be created by instantiating templatesinterface. A screenshot of the interface is shown in Fig. é. W
The example we used in Section IlI-A is an ampledecided to use boxes to represent instances of modules and
illustration of this idea. All system modules—rotating &bl circles to represent instances of channels. The links kegtwe
robotic arm and drill—share the same basic behavior, asodules and channels are represented as lines conneaing th
shown in Fig. 1(a). The mutual exclusion specifications alsboxes and circles. The user of the software can create and
share the same behavior (see Fig. 1(b)). Thus, if templatesanipulate the graphical elements using the mouse cursor.
are used, the system modules can be instantiations of aTemplate design is just a high-level interpretation of
generic “workstation” template, while the channels can benodular supervisory control. Finite-state automata ureler
instantiations of a generic “mutual exclusion” template. lall elements of the design and regular DES operations are
one looks again at the caption of Fig. 1, something vergpplied at the low level to produce the supervisors. Thug, an
similar is described verbally. software which supports template design has to be able to

startp finishy

Fig. 3. The supervisor fo6'l . with respect toG}

pec

SDES 21 beta 2 BE) | The part of the system we used included four modules:

File Graph Operations Options Help

Dl @ & 2 5 e v the input buffer for new parts, the arm with a grabber, the
Desin | L settings BN rotating table which moves a part to the different worksta-
= = tions and one of the workstations, the drill. The arm with

Lot the grabber was simplified to perform only one (high-level)

Cufferitake = Machine Ztake M activity: retrieve a part from the input buffer and place it

u

on the table. The specifications applied to the system were
as follows. First, there has to be mutual exclusion between
channel the table and the arm and between the table and the drill. In
EI%M“ other words, the table should not turn while one of the other
units is in the middle of completing an operation. Second,
there has to be underflow control for the input buffer, i.e.,
- the arm should not retrieve a part if there are no parts in the
e e = — buffer. Third, there has to be control over the sequence of
;H operations: after a part is placed on the table, the table has

lachine 1:put = buffer:put

1‘&. to turn before the drill operates on the part.
- . At the start of the modeling, it was assumed that the
|[chine 2: 2 states, 2 wanstions template library contains all relevant templates (suchhas t
ones in Fig. 1). Then, the modules and channels were created
Fig. 4. The template design software interface. by instantiating the templates and linking the relevannese
The supervisory control algorithms were performed to obtai
modular supervisors, to check the local modularity propert
perform all functions of a regular DES tool as well. Insteadind to generate the corresponding PLC code. The code was
of writing a completely new software package, we decidedownloaded onto the PLC unit and the testbed was started.
to extend the IDES software developed at Rudie’s research
laboratory, [11]. Its architecture supports the additidh o VI. DISCUSSION AND CONCLUSIONS
extensions, it offers an advanced graphical interfaceagfr
tructure, and it can be used on all major computer platforms The template design of DESs is based on theoretical work,
since it is developed in Java. however, the main motivation for its conception was mak-
Since the purpose of template design is to make tHB9 the application of DES control simpler. The following
application of DES theory easier, we decided to try to streanimProvements were envisioned.
line the complete process of application: from modeling to « Faster design of systems. The use of pre-built templates
control of the real hardware. In many cases the real system not only reduces the time to mechanically input new
is controlled by a PLC unit; this is the case in our example FSAs but also the time to mentally consider low-level
system as well. Thus, we focused on the generation of PLC details of FSA implementations.
code from the template design. There are many ways how. More robust designs. Fewer errors can be made during
to convert FSAs into code, however, the method proposed the design since it is not necessary to manually copy
in [4] seems to be most suitable for two reasons: it converts FSAs and to keep track of the names of events in
FSAs directly into PLC code, and it is designed with modular different modules and specifications.
control in mind. Since this approach is generic, the users
still need to make manual modifications to insert hardware-
specific instructions. In our software, for each event in the
template design the user can specify a snippet of PLC
code. Then, during PLC code generation, this code will be
incorporated into the automatically produced code.

00

V. EXAMPLE APPLICATION

In order to test the applicability of template design of
DESs, the methodology was used to design a controller
for a robotic testbed at the Department of Automation and
Systems, Federal University of Santa Catarina, Brazil. The
functionality of the system, shown in Fig. 5, is to retrieve
parts from an input buffer, perform operations on the parts
and test if the operations were successful. Depending on the
outcome of the test, the given part is output into one of a
number of buffers (such as “accepted”, “reprocess”, etad T
system is controlled via a Siemens S7-200 series PLC unit.

Fig. 5. The robotic testbed where template design was applied

« Easier design. Instead of considering the FSAs whicbontrol specifications during the system runtime and thus
underly every template, the designer can focus theimmediately observe the effect of such changes.
creative effort only on the important task of determining
which modules and channels are to be used and how
to link them. The creation of supervisors is completely We would like to thank the following people whose help
automated. and support were crucial for the completion of this work:
The application of the template design methodology to Max de Queiroz, Francisco da Silva, Guilherme Lise and
real project, even though very small, brought some intef-Uis Marques from Federal University of Santa Catarina,
esting insights from the participating engineering stusien Brazil and Steffi Klinge from Otto-von-Guericke University
Surprisingly, the biggest advantage of the design metho&ermany. The project was supported through grants from
ology does not seem to be the ability to use templaté\slSERC and Queen’s University, Canada, and CNPq, Brazil.
per se According to the feedback from the users of the
software, the biggest benefit of the proposed methodolog

VII. ACKNOWLEDGMENTS

REFERENCES
] B. A. Brandin, R. Malik, and P. Malik. Incremental verifibtan and

comes from the fact that the template design environme
makes it very easy to model and remodel systems, i.e., to
create prototypes in the initial stages of system desigis. It
simple to replace modules and channels and then generate e
corresponding supervisors to see what happens. The users no
longer have to keep track of event name consistency between
modules and between specifications. Synchronization is n
achieved by naming events consistently but rather by Jigual
linking them. Then, it is easy to try different synchronirat
strategies and it is possible to use a single template iostan
in a number of ways without having to always rename
events. This property seemed to be especially liberatimgesi [5]
renaming events is laborious and error-prone. In our ptojec
it was necessary to go through a large number of iterations
where the system was simplified with different approachesl€]
This rapid prototyping would not have been feasible if all
operations had to be called manually and if event names had
to be changed for every new approach. (7]
From the observations made during the application of the
template design methodology, it becomes clear that futurgg)
work should focus on the usefulness for rapid prototyping.
For example, it is desirable to allow the creation of concepyg
tual designs without having to instantiate specific tengdat
i.e., by creating “placeholder” modules and channels. The
user will be able to delay the assignment of templates
these placeholders until more of the overall design is ready
Further work should also focus on providing support foil1]
real-time interaction between model and running systera. Th
current implementation of the software supports only ongiz)
way interaction with the real system—PLC code is generated
from the abstract description of the DES supervisors and
it is downloaded to the PLC controller. However, it is notj3
possible to receive any feedback from the real system when
it runs. Feedback which is not real-time, such as a log of
the executed events and how much time they took, mayy)
be used for analysis of the performance of the controlled
system. It would be much more interesting, however, to
be able to connect the software with the system controller
(such as a PLC) in order to obtain real-time feedback. This
could be used in many ways: from animating on the screen
the execution of the system to providing high-level control
from within the software, if the PLC code is equipped to
delegate the control of some events to the software. By
incorporating real-time feedback, a designer could swap

(4]

synthesis of discrete-event systems guided by counter exanibEE
Transactions on Control Systems Techno)o$2(3):387—401, May
2004.

C. de Oliveira, J. E. R. Cury, and C. A. A. Kaestner. Diserevent
systems with guards. |Rroceedings of the 11th IFAC Symposium
on Information Control Problems in Manufacturingolume 1, pages
90-95, Salvador, Brazil, 2004.

] M. H. de Queiroz and J. E. R. Cury. Modular control of comgas

systems. InProceedings of the 2000 American Control Confergnce
volume 6, pages 4051-4055, June 2000.

M. H. de Queiroz and J. E. R. Cury. Synthesis and implemimtat
of local modular supervisory control for a manufacturing .celh
Proceedings of the 6th International Workshop on Discreteeri
Systems (WODES’03)ages 377-382, Zaragoza, Spain, October 2002.
G. Ekberg and B. H. Krogh. Programming discrete controtesys
using state machine templates.Rroceedings of the 8th International
Workshop on Discrete Event Systepages 194-200, Ann Arbor, Ml,
USA, July 2006.

C. M. Enright and M. Barbeau. An evaluation of the TCT tdot
the synthesis of controllers of discrete event systemsCanadian
Conference on Electrical and Computer Engineerimglume 1, pages
241-244, Vancouver, BC, Canada, September 1993.

L. Grigorov. Hierarchical control of discrete-eventstgms. Survey
paper, School of Computing, Queen’s University, Canada,5200
Available at http://www.cs.queensu.Tafigorov/.

L. Grigorov and K. Rudie. Problem solving in control ofsdrete-
event systems. IfProceedings of the European Control Conference
2007, pages 5500-5507, Kos, Greece, July 2007.

R. J. Leduc.Hierarchical Interface-based Supervisory ContréthD
thesis, Department of Electrical and Computer Engineerimiyeysity

of Toronto, 2002.

] P.J. Ramadge and W. M. Wonham. Supervisory control of ssabd

discrete event processeSIAM Journal on Control and Optimization
25(1):206-230, 1987.

K. Rudie. The integrated discrete-event systems taoPrbceedings
of the 8th International Workshop on Discrete Event Systgrages
394-395, Ann Arbor, MI, USA, July 2006.

E. A. P. Santos, J. E. R. Cury, and V. J. D. Negri. Modefagias
especificages operacionais de sistemas de mani@dag montagem
automatizados. IrSimposio Brasileiro de Automé&o Inteligente
pages 144-149, Baurua8 Paulo, Brazil, 2003.

E. A. P. Santos, V. J. D. Negri, and J. E. R. Cury. A compatet
model for supporting conceptual design of automatic systems. |
Proceedings of 13th International Conference on Engimegbesign
pages 517-524, Glasgow, UK, August 2001.

W. M. Wonham and P. J. Ramadge. Modular supervisory obiwfr
discrete-event systemMathematics of Control, Signals, and Systems
1:13-30, 1988.

